268
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A three-layer egg-configurated Bragg microcavity of polyglycerol coated cholesteric-liquid-crystal encapsulated by hollow-glass-microsphere

, , , , , , & show all
Pages 508-515 | Received 09 Jul 2019, Accepted 22 Aug 2019, Published online: 03 Sep 2019

References

  • Uchida T. 40 years reseach and development on liquid crystal displays. Jpn J Appl Phys. 2014;53:03CA02.
  • Wang FR, Liu YJ, Lu YL, et al. High-sensitivity Fabry Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect. Opt Lett. 2018;43(21):5355–5358.
  • Wang FR, Wang JL, Long SB, et al. All-fibre one-way filter based on both-end-filled photonic liquid crystal fibres. Liq Cryst. 2017;45(7):1004–1009.
  • Lu YL, Yang Y, Wang Y, et al. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing. Opt Express. 2018;26(3):3277–3285.
  • Lin JD, Hsieh MH, Wei GJ, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Opt Express. 2013;21(13):15765–15776.
  • Huang Y, Zhou Y, Doyle C, et al. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt Express. 2016;14(3):1236–1242.
  • Lin SH, Lee CR. Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance. Opt Express. 2011;19(19):18199–18206.
  • Chanishvili A, Chilaya G, Petriashvili G, et al. Widely tunable ultraviolet-visible liquid crystal laser. Appl Phys Lett. 2005;86(5):051107.
  • Tzeng SYT, Chen CN, Tzeng Y. Thermal tuning band gap in cholesteric liquid crystals. Liq Cryst. 2010;37(9):1221–1224.
  • Furumi S, Yokoyama S, Otomo A, et al. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl Phys Lett. 2003;82(1):16–18.
  • Lin TH, Jau HC, Chen CH, et al. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy. Appl Phys Lett. 2006;88(6):061122.
  • Seok LS, Bin KJ, Ho KY, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Sci Adv. 2018;4:eaat8276.
  • Shibaev PV, Sanford RL, Chiappetta D, et al. Light controllable tuning and switching of lasing in chiral liquid crystals. Opt Express. 2005;13(7):2358–2363.
  • Chilaya G, Chanishvili A, Petriashvili G, et al. Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes. Adv Mater. 2007;19(4):565–568.
  • Jung YD, Khan M, Park SY. Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics. J Mater Chem B. 2014;2:4922–4928.
  • Humar M, Ravnik M, Pajk S, et al. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;3(10):595–600.
  • Wang Y, Zhao LY, Wang L, et al. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens Actuators B. 2018;258:1090–1098.
  • Xu Y, Liang W, Yariv A, et al. Modal analysis of Bragg onion resonators. Opt Lett. 2004;29(5):424–426.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18(26):26995–27003.
  • Pirnat G, Humar M, Muševič I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers. Opt Express. 2018;26(18):22615–22625.
  • Wang Y, Li HY, Zhao LY, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets. Appl Phys Lett. 2016;109(23):231906.
  • Lin HB, Eversole JD, Campillo AJ. Spectral properties of lasing microdroplets. J Opt Soc Am B. 1992;9(1):43–50.
  • Mazumder MM, Gillespie JB, Chen G, et al. Wavelength shifts of dye lasing in microdroplets: effect of absorption change. Opt Lett. 1995;20(8):878–880.
  • Xu F, Crooker PP. Chiral nematic droplets with parallel surface anchoring. Phys Rev E. 1997;56(6):6853–6860.
  • Cipparrone G, Mazzulla A, Pane A, et al. Chiral self‐assembled solid microspheres: a novel multifunctional microphotonic device. Adv Mater. 2015;23(48):5704.
  • Zhou Y, Huang Y, Wu ST. Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector. Opt Express. 2006;14(9):3906–3916.
  • Humar M. Liquid-crystal-droplet optical microcavities. Liq Cryst. 2016;43:1937–1950.
  • Yang DK, Wu ST. Fundamentals of liquid crystals devices. Chichester: John Wiley & Sons Ltd; 2006.
  • Ta VD, Chen R, Sun HD. Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci Rep. 2013;3(1):1362

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.