395
Views
21
CrossRef citations to date
0
Altmetric
Article

Adaptive nematic liquid crystal lens array with resistive layer

, , , , , & show all
Pages 563-571 | Received 15 Jul 2019, Accepted 28 Aug 2019, Published online: 05 Sep 2019

References

  • Stapert HR, Valle SD, Verstegen EJK, et al. Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs. Adv Funct Mater. 2003;13:732–738.
  • PJ S, CM T, EM M, et al. Switchable fiber coupling using variable-focal-length microlenses. Rre Sci Instrum. 2001;72:3132–3134.
  • Fu Y, Bryan N. Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections. Opt Express. 2002;10:540–549.
  • Hiddink MGH, Zwart STD, Willemsen OH, et al. Locally switchable 3D displays. Soc Inf Disp Tech Dig. 2012;37:1142–1145.
  • Xin ZW, Wei D, Zhang XY, et al. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation. Opt Express. 2018;26:4035–4049.
  • Huang YP, Chen CW, Shen TC, et al. Autostereoscopic 3D display with scanning Multi-Electrode driven liquid crystal (MeD-LC) Lens. 3D Res. 2010;1:39–42.
  • Mcmanamon PF, Dorschner TA, Corkum DL, et al. Optical phased array technology. Proc IEEE. 1996;84:268–298.
  • Riza NA, Dejule MC. Three-terminal adaptive nematic liquid-crystal lens device. Opt Lett. 1994;19:1013–1015.
  • Lin HC, Chen MS, Lin YH. A review of electrically tunable focusing liquid crystal lenses. Trans Electr Electron Mater. 2011;12:234–240.
  • Nose T, Masuda S, Sato S. Optical properties of a liquid crystal microlens with a symmetric electrode structure. Jpn J Appl Phys. 1991;30:L2110–L2112.
  • Cui JP, Fan HX, Wang QH. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure. Liq Cryst. 2017;44:643–647.
  • Lin YH, Wang YJ, Reshetnyak V. Liquid crystal lenses with tunable focal length. Liq Cryst Rev. 2017;5:111–143.
  • Nose T, Sato S. A liquid crystal microlens obtained with a non-uniform electric field. Liq Cryst. 1989;5:1425–1433.
  • Lee YJ, Baek JH, Kim Y, et al. Polarizer-free liquid crystal display with electrically switchable microlens array. Opt Express. 2013;21:129–134.
  • Dou H, Chu F, Guo YQ, et al. Large aperture liquid crystal lens array using a composited alignment layer. Opt Express. 2018;26:9254–9262.
  • Tian LL, Chu F, Dou H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1630491
  • Popov P, Honaker LW, Mirheydari M, et al. Chiral nematic liquid crystal microlenses. Sci Rep. 2017;7:1603.
  • Lee JH, Beak JH, Kim Y, et al. Switchable reflective lens based on cholesteric liquid crystal. Opt Express. 2014;22:9081–9086.
  • Ren H, Fan YH, Gauza S, et al. Tunable microlens arrays using polymer network liquid crystal. Opt Commun. 2004;230:267–271.
  • Sun J, Xu S, Ren H, et al. Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens. Appl Phys Lett. 2013;102:161106.
  • Ren H, Fan YH, Lin YH, et al. Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets. Opt Commun. 2005;247:101–106.
  • Ren H, Lin YH, Fan YH, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal. Appl Phys Lett. 2005;86:141110.
  • Li Y, Huang SJ, Zhou PC, et al. Polymer-stabilized blue phase liquid crystals for photonic applications. Adv Mater Technol. 2016;1:1600102.
  • Chu F, Dou H, Li GP, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq Cryst. 2017;45:715–720.
  • Chu F, Dou H, Tian LL, et al. Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer. Liq Cryst. 2019;46:1273–1279.
  • Kao YY, Chao PCP, Hsueh CW. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Opt Express. 2010;18:18506–18518.
  • Huang C, Zhang Q. Enhanced dielectric and electromechanical response in high dielectric constant all-polymer percolative composites. Adv Funct Mater. 2004;14:501–506.
  • Lu J, Moon KS, Kim BK, et al. High dielectric constant polyaniline/expoxy composites via in situ polymerization for embedded capacitor application. Polymer. 2007;48:1510–1516.
  • Farag AAM, Ashery A, Rafea MA. Optical dispersion and electronic transition characterizations of spin coated polyaniline thin films. Synth Met. 2010;160:156–161.
  • Liu JL, Ma HM, Sun YB. Blue-phase liquid crystal display with high dielectric material. Liq Cryst. 2016;43:1748–1752.
  • Guo YQ, Wang YF, Zhang C, et al. Blue-phase liquid crystal display with insulating protrusion. Liq Cryst. 2018;45:1585–1593.
  • Guo YQ, Wang YF, Zhang C, et al. Low voltage blue-phase liquid crystal display with insulating protrusion sandwiched between dual-layer electrodes. Liq Cryst. 2019;46:523–534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.