139
Views
10
CrossRef citations to date
0
Altmetric
Article

Phase behavior and slow molecular dynamics in the glassy state and in the glass transformation of a nematic liquid crystal: 4CFPB

ORCID Icon & ORCID Icon
Pages 604-617 | Received 05 Jul 2019, Accepted 30 Aug 2019, Published online: 13 Sep 2019

References

  • Hamley IW. Introduction to soft matter. Chichester: John Wiley; 2000.
  • Jones RAL. Soft condensed matter. Oxford: Oxford University Press; 2003.
  • Dantras E, Dandurand J, Lacabanne C, et al. HRTEM, TSC and broadband dielectric spectroscopy of a discotic liquid crystal. Phys Chem Chem Phys. 2004;6:4167–4173.
  • Dantras E, Ibos L, Dandurand J et al. Influence of electro-active organic materials physical structure on their electrical activities. 12th Int.Symp.Electrets (Ise 12), Proceedings; 2005. p. 329–332.
  • Moura Ramos JJ, Diogo HP. The glassy dynamics in liquid crystalline 4-n-pentyl-4ʹ-cyanobiphenyl as studied by thermally stimulated currents. Molec Cryst Liq Cryst. 2013;571:19–29.
  • Kripotou S, Georgopoulos D, Kyritsis A, et al. Phase transitions and molecular mobility in 5CB and CE8 studied by dielectric techniques. Molec Cryst Liq Cryst. 2015;623:407–423.
  • Diez-Berart S, López DO, Salud J, et al. Two glass transitions associated to different dynamic disorders in the nematic glassy state of a non-symmetric liquid crystal dimer dopped with g-alumina nanoparticles. Materials. 2015;8:3334–3351.
  • Diego JA, Sellarès J, Diez-Berart S, et al. Influence of internal flexibility on the double glass transition in a series of odd non-symmetric liquid crystal dimers characterised by dielectric measurements. Liq Cryst. 2017;44:1007–1022.
  • Sorai M, Seki S. Heat capacity of N-(o-hydroxy-p-methoxybenzylidene)-p-butylaniline: a glassy nematic liquid crystal. Molec Cryst Liq Cryst. 1973;23:299–327.
  • Tombari E, Johari GP. Structural fluctuations and orientational glass of levoglucosan – high stability against ordering and absence of structural glass. J Chem Phys. 2015;142:104501.
  • Yamamuro O, Yamasaki H, Madokoro Y, et al. Calorimetric and neutron scattering studies of plastically crystalline cyclooctanol*. J Phys: Condens Matter. 2003;15:5439.
  • Massalska-Arodz M, Krawczyk J, Juszynska E, et al. Molecular dynamics of 4-cyano-3-fluorophenyl 4-butylbenzoate as studied by dielectric relaxation spectroscopy. Acta Phys Polonica A. 2010;117:532–536.
  • Rozwadowski T, Massalska-Arodz M, Juszynska E, et al. Dielectric spectroscopy studies of 4-cyano-3-fluorophenyl-4-butylbenzoate liquid crystal at high pressure. Acta Phys Polonica A. 2012;122:378–381.
  • Rozwadowski T, Massalska-Arodz M, Wojnarowska Z, et al. Isothermal high-pressure studies of 4-cyano-3-fluorophenyl 4-butylbenzoate dynamics near room temperature. Phys Rev E. 2012;86:051702.
  • Inaba A, Suzuki H, Massalska-Arodz M, et al. Polymorphism and thermodynamic functions of liquid crystalline material 4-cyano-3-fluorophenyl 4-butylbenzoate. J Chem Thermod. 2012;54:204–210.
  • Moura Ramos JJ, Taveira-Marques R, Diogo HP. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J Pharm Sci. 2004;93:1503–1507.
  • Diogo HP, Viciosa MT, Moura Ramos JJ. Differential scanning calorimetry and thermally stimulated depolarization currents study on the molecular dynamics in amorphous fenofibrate. Thermochim Acta. 2016;623:29–35.
  • Teyssedre G, Lacabanne C. Some considerations about the analysis of thermostimulated depolarization peaks. J Phys D: Appl Phys. 1995;28:1478–1487.
  • Moura Ramos JJ, Viciosa MT, Diogo HP. Thermal behaviour of two anti-inflammatory drugs (celecoxib and rofecoxib) and slow relaxation dynamics in their amorphous solid state. Comparison between the dynamic fragility obtained by dielectric spectroscopy and by thermostimulated currents. Mol Phys. 2018;117:644–660.
  • van Turnhout J. Thermally stimulated discharge of polymer electrets. Amsterdam: Elsevier; 1975.
  • Chen R, Kirsh Y. Analysis of thermally stimulated processes. Oxford: Pergamon Press; 1981.
  • van Turnhout J. Thermally stimulated discharge of electrets. In: Sessler GM, editor. Electrets, p. 81-215, vol. 33 of: Ascheron C, Dresslhaus MS, editors. Topics in applied physics. Berlin/Heidelberg: Springer; 1987.
  • Gun’ko VM, Zarko VI, Goncharuk EV, et al. TSDC spectroscopy of relaxational and interfacial phenomena. Adv Colloid Interface Sci. 2007;131:1–89.
  • Sauer BB. Thermally stimulated currents: recent developments in characterisation and analysis of polymers. In: Cheng SZD, editor. Applications to Polymers and Plastics, p. 653-711, vol. 3 of: Gallagher PK, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 2002.
  • Vassilikou-Dova A, Kalogeras IM. Dielectric analysis (DEA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. Hoboken, New Jersey: John Wiley; 2009. p. 497–613.
  • Boutonnet-Fagegaltier N, Lamure A, Menegotto J, et al. The use of thermally stimulated current spectroscopy in the pharmaceutical sciences. In: Craig DQM, Reading M, editors. Thermal analysis of pharmaceuticals. Boca Raton: CRC Press; 2007. p. 359–382.
  • Barker S, Antonijevic MD. Thermal analysis - dielectric techniques. In: Storey RA, Ymén I, editors. Solid state characterization of pharmaceuticals. Chichester: Blackwell Publishing; 2011. p. 187–206.
  • Kelly SM. The synthesis and transition temperatures of benzoate ester derivatives of 2-fluoro-4-hydroxy-and 3-fluoro-4-hydroxybenzonitriles. Helv Chim Acta. 1984;67:1572–1579.
  • Rozwadowski T, Massalska-Arodz M, Kolek L, et al. Kinetics of cold crystallization of 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) glass forming liquid crystal. I. nonisothermal process as studied by microscopic, calorimetric, and dielectric methods. Cryst Growth Des. 2015;15:2891–2900.
  • Moura Ramos JJ, Diogo HP. Orientational glass, orientationally disordered crystal and crystalline polymorphism: a further study on the thermal behavior and molecular mobility in levoglucosan. J Molec Liq. 2019;286:110914.
  • Angell CA. Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131-133:13–31.
  • Böhmer R, Ngai KL, Angell CA, et al. Nonexponential relaxations in strong and fragile glass formers. J Chem Phys. 1993;99:4201–4209.
  • Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924–1935.
  • Rozwadowski T, Massalska-Arodz M, Jasiurkowska-Delaporte M. Negative pressure effects on molecular dynamics and phase diagram of glass-forming nematic liquid crystal 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) confined in nanopores. J Molec Liq. 2019;279:127–132.
  • Moura Ramos JJ, Mano JF, Sauer BB. Some comments on the significance of the compensation effect observed in thermally stimulated current experiments. Polymer. 1997;38:1081–1089.
  • Urban S, Gestblom B, Dabrowski R. Comparison of the dielectric properties of 4-(2-methylbutyl)-4ʹ-cyanobiphenyl (5*CB) and 4-pentyl-4ʹ-cyanobiphenyl (5CB) in the liquid state. Phys Chem Chem Phys. 1999;1:4843–4846.
  • Drozd-Rzoska A. Glassy dynamics of liquid crystalline 4[‘]-n-pentyl-cyanobiphenyl in the isotropic and supercooled nematic phases. J Chem Phys. 2009;130:234910–234918.
  • Mano JF, Correia NT, Moura Ramos JJ, et al. Dipolar relaxation mechanisms in the vitreous state, in the glass transition region and in the mesophase, of a side chain polysiloxane liquid crystal. Liq Cryst. 1996;20:201–217.
  • Attard GS. The determination of the order parameters and director alignment in the nematic phase of a liquid crystalline side chain polymer by the resolution of dielectric loss spectra. Mol Phys. 1986;58:1087–1100.
  • Attard G, Araki K, Moura Ramos JJ, et al. Molecular dynamics and macroscopic alignment properties of thermotropic liquid-crystalline side chain polymers as studied by dielectric relaxation spectroscopy. Liq Cryst. 1988;3:861–879.
  • Mano JF, Correia NT, Moura Ramos JJ. Molecular motions of side-chain liquid crystalline polymers in the liquid crystalline phase studied by the thermally stimulated currents technique. Polymer. 1994;35:3561–3564.
  • Mano JF, Moura Ramos JJ, Fernandes AC, et al. The dipolar relaxation behaviour of a liquid-crystalline side-chain polymer as studied by thermally stimulated discharge currents. Polymer. 1994;35:5170–5178.
  • Mano JF, Moura Ramos JJ. Dielectric behaviour of a side-chain-bearing liquid-crystalline polysiloxane. J Therm Anal Calorim. 1995;44:1037–1046.
  • Mano JF, Correia NT, Moura Ramos JJ, et al. A thermally stimulated discharge currents study of the molecular motions in two polysiloxane side-chain liquid crystalline polymers. J Polym Sci B Polym Phys. 1995;33:269–277.
  • Correia NT, Moura Ramos JJ. Dipolar motions and phase transitions in a side-chain polysiloxane liquid crystal. A study by thermally stimulated depolarisation currents. J Polym Sci B: Polym Phys. 1999;37:227–235.
  • Mano JF, Moura Ramos JJ, Lacey D. Multiple and inter-related relaxation mechanisms in the mesophase of side-chain liquid crystalline polysiloxanes: a thermally stimulated currents study. Polymer. 1996;37:3161–3164.
  • Moura Ramos JJ, Mano JF, Lacey D, et al. Dipolar relaxations in the glass transition region and in the liquid crystalline phase of two side -chain liquid crystalline polysiloxanes. J Polym Sci B Polym Phys. 1996;34:2067–2075.
  • Starkweather HW. Distribution of activation enthalpies in viscoelastic relaxations. Macromolecules. 1990;23:328–332.
  • Starkweather HW. Aspects of simple, non-cooperative relaxations. Polymer. 1991;32:2443–2448.
  • Starkweather HW. Simple and complex relaxations. Macromolecules. 1981;14:1277–1281.
  • Moura Ramos JJ, Diogo HP. The determination of the glass transition temperature by thermally stimulated depolarization currents. Phase comparison with the performance of other techniques. Transitions. 2017;90:1061–1078.
  • Vogel H. Das temperature-abhängigketsgesetz der viskosität von flüssigkeiten. (The temperature dependence law of the viscosity of fluids). Physik Z. 1921;22:645–646.
  • Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–355.
  • Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem. 1926;156:245–257.
  • Kudlik A, Tschirwitz C, Benkhof S, et al. Slow secondary relaxation process in supercooled liquids. Europhys Lett. 1997;40:649–654.
  • Ngai KL, Capaccioli S. Relation between the activation energy of the Johari-Goldstein β relaxation and Tg of glass formers. Phys Rev E. 2004;69:031501.
  • Johari GP. Low-frequency molecular relaxations in disordered solids. J Chim Phys. 1985;82:283–291.
  • Vij JK, Power G. Physical ageing and the Johari-Goldstein relaxation in molecular glasses. J Non-Cryst Solids. 2011;357:783–792.
  • Moura Ramos JJ, Diogo HP, Pinto SS. Effect of physical aging on the Johari-Goldstein and alpha relaxations of D-sorbitol: a study by thermally stimulated depolarization currents. J Chem Phys. 2007;126:144506.
  • Diogo HP, Moura Ramos JJ. Contribution of the technique of thermostimulated currents for the elucidation of the nature of the Johari-Goldstein and other secondary relaxations in the vitreous state. IEEE Trans Dielect Elect Insul. 2014;21:2301–2309.
  • Viciosa MT, Moura Ramos JJ, Diogo HP. The slow relaxation dynamics in the amorphous pharmaceutical drugs cimetidine, nizatidine, and famotidine. J Pharm Sci. 2016;105:3573–3584.
  • Swallen SF, Kearns KL, Mapes MK, et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science. 2007;315:353–356.
  • Dawson KJ, Kearns KL, Yu L, et al. Physical vapor deposition as a route to hidden amorphous states. Proc Natl Acad Sci. 2009;106:15165–15170.
  • Rodríguez-Tinoco C, Ngai KL, Rams-Baron M, et al. Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses. Phys Chem Chem Phys. 2018;20:21925–21933.
  • Ngai KL, Paluch M, Rodríguez-Tinoco C. Why is the change of the Johari-Goldstein β-relaxation time by densification in ultrastable glass minor? Phys Chem Chem Phys. 2018;20:27342–27349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.