175
Views
5
CrossRef citations to date
0
Altmetric
Articles

Structural, thermal, dielectric and optical behaviour investigations of water-free ZnO/lyotropic liquid crystal nanocolloids

&
Pages 678-688 | Received 09 Aug 2019, Accepted 25 Sep 2019, Published online: 09 Oct 2019

References

  • Qiu L, McCaffrey R, Jin Y, et al. Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki–miyaura coupling chemical science. Chem Sci. 2018;9:676–680.
  • Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small. 2008;4:310–325.
  • Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127–3150.
  • Bronstein LM, Shifrina ZB. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev. 2011;111:5301–5344.
  • Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–1959.
  • Wang ZX, Tan BE, Hussain I, et al. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir. 2007;23:885–895.
  • Archibald DD, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures. Nature. 1993;364:430–433.
  • Sun W, Boulais E, Hakobyan Y, et al. Casting inorganic structures with DNA molds. Science. 2014;346:717.
  • MacFarlane RJ, Lee B, Jones MR, et al. Nanoparticle superlattice engineering with DNA. Science. 2011;334:204–208.
  • Dellinger TM, Braun PV. Lyotropic liquid crystals as nanoreactors for nanoparticlesynthesis. Chem Mater. 2004;16:2201–2207.
  • Warren SC, Messina LC, Slaughter LS, et al. Ordered mesoporous materials from metal nanoparticles-block copolymer assembly. Science. 2008;320:1748–1752.
  • Saliba S, Davidson P, Imperor-Clerc M, et al. Facile direct synthesis of ZnO nanoparticles within lyotropic liquid crystals: towards organized hybrid materials. J Mater Chem. 2011;21:18191–18194.
  • Parent LR, Robinson DB, Woehl TJ, et al. Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano. 2012;6:3589–3596.
  • Wang L, Chen X, Zhan J, et al. Synthesis of gold nano and microplates in hexagonal liquid crystals. J Phys Chem B. 2005;109:3189–3194.
  • Kijima T, Nagatomo Y, Takemoto H, et al. Synthesis of nanohole-structured single-crystalline platinum nanosheets using surfactant-liquid-crystals and their electrochemical characterization. Adv Funct Mater. 2009;19:545–553.
  • Qi L, Gao Y, Ma J. Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals. Colloids Surf A Physicochem Eng Asp. 1999;157:285–294.
  • Patakfalvi R, Dekany I. Preparation of silver nanoparticles in liquid crystalline systems. Colloid Polym Sci. 2002;280:461–470.
  • Jiang X, Xie Y, Lu J, et al. Oleate vesicle template route to silver nanowires. J Mater Chem. 2001;11:1775–1777.
  • Umadevi S, Umamaheswari R, Ganesh V. Lyotropic liquid crystal-assisted synthesis of micro- and nanoparticles of silver. Liq Cryst. 2017;44:1409–1420.
  • Shukla RK, Raina KK. Effect of quenching on the structural and dynamic properties of non-aqueous lyotropic mesophases. Liq Cryst. 2016;44(6):989–995.
  • Auvray X. Perche, T, Petipas, C et al. Influence of solvent-headgroup nteractions on the formation of lyotropic liquid crystal phases of surfactants in water and nonaqueous protic and aprotic solvents. Langmuir. 1992;8:2671–2679.
  • R L K, S A M, Shoemaker RK, et al. New type of li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J Am Chem Soc. 2009;131:15972–15973.
  • Shukla RK, Raina KK. Observation on lyotropic liquid crystalline bahaviour of a cationic surfactant and polar solvent in a non-aqueous medium. Int J Mod Phys B. 2009;23:5075–5083.
  • Shukla RK, Raina KK. Structural and dielectric behaviour of non-aqueous lyotropic mixtures: influence of amphiphile chain lengths and counter ions. Liq Cryst. 2014;41:1090–1096.
  • Shukla RK, Raina KK. Effect of solvent polarity on the self-assembly and dielectric dynamics of non-aqueous lyotropic liquid crystalline phases. Liq Cryst. 2014;41:701–706.
  • Greaves TL, Drummond CJ. Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2008;37:1709–1726.
  • Shimura H, Yoshio M, Hoshino K, et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals. J Am Chem Soc. 2008;130:1759–1765.
  • Irimpan L, Nampoori VPN, Radhakrishnan P. Effect of annealing on the spectral and nonlinear optical characteristics of thin films of nano-ZnO. J Appl Phys. 2008;103:033118.
  • Garbovskiy YA, Glushchenko AV. Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. Solid State Phys. 2011;62:1–74.
  • Shukla RK, Liebig CM, Evans DR, et al. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014;4:18529–18536.
  • Shukla RK, Raina KK, Haase W. Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liq Cryst. 2014;41:1726–1732.
  • Shukla RK, Evans DR, Haase W. Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: electrooptic and dielectric parameters influenced by properties of the host, the dopant and the measuring cell. Ferroelectrics. 2016;500:141–152.
  • Pushpavathi N, Sandhya KL, Pratibha R. Photoluminescence and electrical conductivity measurement of liquid crystal doped with ZnO nanoparticles. Liq Cryst. 2019;46(5):666–673.
  • Ahn CH, Masud AR, Hong SH, et al. Particle size dependence of electro-optical switching in ZrP nano colloid. Liq Cryst. 2019;46(2):159–165.
  • Lee J, Kim A, Hong SK, et al. Selective stabilisation of blue phase liquid crystal induced by distinctive geometric structure of additives. Liq Cryst. 2018;45(2):230–237.
  • Chaudhary A, Shukla RK, Malik P, et al. ZnO/FLC nanocomposites with low driving voltage and non-volatile memory for information storage applications. Curr Appl Phys. 2019;19:1374–1378.
  • Zhang G, Chen X, Zhao J, et al. Nanoparticles in lamellar lyotropic liquid crystal. Mat Lett. 2006;60:2889–2892.
  • Murali S, Xu T, Marshall BD, et al. Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles. Langmuir. 2010;26(13):11176–11183.
  • Venugopal E, Bhat SK, Vallooran JJ, et al. Phase behavior of lipid-based lyotropic liquid crystals in presence of colloidal nanoparticles. Langmuir. 2011;27:9792–9800.
  • Vallooran JJ, Handschin S, Bolisetty S, et al. Twofold light and magnetic responsive behavior in nanoparticle-lyotropic liquid crystal systems. Langmuir. 2012;28:5589–5595.
  • Lagerwall J, Scalia G, Haluska M, et al. Nanotube alignment using lyotropic liquid crystals. Adv Mater. 2007;19:359–364.
  • Jo HR, Yamamoto J, Lagerwall J, et al. Proc. SPIE 9004, emerging liquid crystal technologies IX. 90040V; 2014 Feb 19; DOI:10.1117/12.2049189.
  • Shukla RK, Raina KK. Structural and dielectric behaviors of Bi4Ti3O12 – lyotropic liquid crystalline nanocolloids. Pha Trans. 2018;91(3):301–307.
  • Shukla RK, Chamoli P, Raina KK. Lyotropic liquid crystalline nano templates for synthesis of ZnS cogwheels. J Mol Liq. 2019;283:667–673.
  • Jiang Y, Zhang D, He L, et al. Entropic interactions in semiflexible polymer nanocomposite melts. J Phys Chem B. 2016;120(3):572–582.
  • Ramos L, Fabre P, Dubois E. Compatibility between solid particles and a lamellar phase: a crucial role of the membrane interactions. J Phys Chem. 1996;100(11):4533–4537.
  • Roux D, Safinya CR. A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions in fluid multimembrane lyotropic phases. J Phys France. 1988;49(2):307–318.
  • Israelachvili JJ. Intermolecular & surface forces. 2nd ed. London: Academic Press; 1992. p. 176, 213, 288.
  • Qu F, Morais PC. Energy levels in metal oxide semiconductor quantum dots in water-based colloids. J Chem Phys. 1999;111:8588–8594.
  • Qu F, Morais PC. The pH dependence of the surface charge density in oxide-based semiconductor nanoparticles immersed in aqueous solution. IEEE Trans Magn. 2001;37:2654–2656.
  • Debye P. Polar Molecules. New York: Chemical Catalogue Company; 1929.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341–351.
  • Shukla RK, Raina KK. Effect of viscosity, pH and physicochemical parameters of solvent on the aggregation and dielectric behaviour of lyotropic liquid crystals binary mixtures. J Mol Liq. 2018;250:71–79.
  • Malik A, Choudhary A, Silotia P, et al. Effect of ZnO nanoparticles on the SmC*-SmA* phase transition temperature in electroclinic liquid crystals. J Appl Phys. 2011;110:064111.
  • Singh DP, Gupta SK, Pandey KKA, et al. Ferroelectric liquid crystal matrix dispersed with Cu doped ZnO nanoparticles. J Non-Cryst Sol. 2013;363:178–186.
  • Manohar R, Srivastava AK, Tripathi PK, et al. Dielectric and electro-optical study of ZnO nano rods doped ferroelectric liquid crystals. J Mater Sci. 2011;46:5969–5976.
  • Chaudhary A, Malik P, Mehra R, et al. Influence of ZnO nanoparticle concentration on electro-optic and dielectric properties of ferroelectric liquid crystal mixture. J Mol Liq. 2013;188:230–236.
  • Podgornov FV, Wipf R, Stühn B, et al. Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: impact of nanoparticle shape. Liq Cryst. 2016;43(11):1536–1547.
  • Koval’chuk AV, Dolgov L, Yaroshchuk O. Dielectric studies of dispersions of carbon nanotubes in liquid crystals 5CB. Semi Phys Quan Elec Optoelect. 2008;11:337–341.
  • Podgornov FV, Gavrilyak M, Karaawi A, et al. Mesophase materials as smart media for emerging pressure sensors: capacitive method of measurement of DC conductivity. In 2018 Global Smart Industry Conference (GloSIC); South Ural State University, Chelyabinsk, Russia; IEEE; p. 1–5.
  • Tauc J. Amorphous and liquid semiconductor. New York: Plenum Press; 1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.