337
Views
2
CrossRef citations to date
0
Altmetric
Articles

Bulk-mediated in-situ homogeneous photoalignment induced by reactive mesogen containing diphenylacetylene moiety

, , , , , & ORCID Icon show all
Pages 819-830 | Received 23 Sep 2019, Accepted 11 Oct 2019, Published online: 28 Oct 2019

References

  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18(4):127–128.
  • Berreman DW. Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells. J Opt Soc Am. 1973;63(11):1374–1380.
  • Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature. 1996;381:212.
  • Kim K-H, Song J-K. Technical evolution of liquid crystal displays. Npg Asia Mater. 2009;1:29.
  • Oh‐e M, Kondo K. Electro‐optical characteristics and switching behavior of the in‐plane switching mode. Appl Phys Lett. 1995;67(26):3895–3897.
  • Oh‐e M, Kondo K. Response mechanism of nematic liquid crystals using the in‐plane switching mode. Appl Phys Lett. 1996;69(5):623–625.
  • Lee SH, Lee SL, Kim HY. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl Phys Lett. 1998;73(20):2881–2883.
  • Kim M, Jin HS, Lee SJ, et al. Liquid crystals for superior electro-optic performance display device with power-saving mode. Adv Opt Mater. 2018;6(11):1800022.
  • Ho Y I, Il Sub S, Ji Youn L, et al. Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display. J Phys D: Appl Phys. 2006;39(11):2367.
  • Park JW, Ahn YJ, Jung JH, et al. Liquid crystal display using combined fringe and in-plane electric fields. Appl Phys Lett. 2008;93(8):081103.
  • Yun HJ, Jo MH, Jang IW, et al. Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy. Liq Cryst. 2012;39(9):1141–1148.
  • Takeda A, Kataoka S, Sasaki T, et al. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology. SID Symp Dig Tech Pap. 1998;29(1):1077–1080.
  • Ma J, Yang Y-C, Zheng Z, et al. A multi-domain vertical alignment liquid crystal display to improve the V–T property. Displays. 2009;30(4):185–189.
  • Zocher H. Über die optische anisotropie selektiv absorbierender stoffe und über mechanische erzeugung von anisotropie. Naturwissenschaften. 1925;13(49–50):1015–1021.
  • Berreman DW, Surface S. Shape and the alignment of an adjacent nematic liquid crystal. Phys Rev Lett. 1972;28(26):1683–1686.
  • van Aerle NAJM, Tol AJW. Molecular orientation in rubbed polyimide alignment layers used for liquid-crystal displays. Macromolecules. 1994;27(22):6520–6526.
  • Chaudhari P, Lacey J, Doyle J, et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays. Nature. 2001;411:56.
  • Doyle JP, Chaudhari P, Lacey JL, et al. Ion beam alignment for liquid crystal display fabrication. Nucl Instrum Methods Phys Res A. 2003;206:467–471.
  • Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev. 2000;100(5):1847–1874.
  • Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13(9):2037–2057.
  • Schadt M, Schmitt K, Kozinkov V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys. 1992;31:2155–2164.
  • van Haaren J. Wiping out dirty displays. Nature. 2001;411:29.
  • Hindmarsh P, Owen GJ, Kelly SM, et al. New coumarin polymers as non-contact alignment layers for liquid crystals. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1999;332(1):439–446.
  • Komitov L, Ichimura K, Strigazzi A. Light-induced anchoring transition in a 4,4ʹ-disubstituted azobenzene nematic liquid crystal. Liq Cryst. 2000;27(1):51–55.
  • Nobuhiro K, Katsuya H, Hiroshi O, et al. Molecular-oriented photoalignment layer for liquid crystals. Jpn J Appl Phys. 2007;46:339.
  • Oleg Y, Jacob H, Vladimir C, et al. Azodyes as photoalignment materials for polymerizable liquid crystals. Jpn J Appl Phys. 2007;46:2995.
  • Lee JM, Kim JH, Kim HJ, et al. Achieving a robust homogenously aligned liquid crystal layer with reactive mesogen for in-plane switching liquid crystal displays. Liq Cryst. 2017;44(7):1194–1200.
  • Mizusaki M, Tsuchiya H, Minoura K. Fabrication of homogenously self-alignment fringe-field switching mode liquid crystal cell without using a conventional alignment layer. Liq Cryst. 2017;44(9):1394–1401.
  • He R, Wen P, Kang S-W, et al. Polyimide-free homogeneous photoalignment induced by polymerisable liquid crystal containing cinnamate moiety. Liq Cryst. 2018;45(9):1342–1352.
  • Olenik ID, Kim MW, Rastegar A, et al. Characterization of unidirectional photopolymerization in poly(vinyl cinnamate) by surface optical second-harmonic generation. Phys Rev E. 1999;60(3):3120–3128.
  • Kim MW, Rastegar A, Olenik ID, et al. Alignment of nematic liquid crystals on an electrically poled photopolymer film. J Appl Phys. 2001;90(7):3332–3337.
  • Kundu S, Lee M-H, Lee SH, et al. In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification. Adv Mater. 2013;25(24):3365–3370.
  • Yamamura S, Tamaki T, Seki T, et al. α-hydrazono-β-keto esters as command molecules. Chem Lett. 1992;21(4):543–546.
  • Sasaki T, Ikeda T. Photochemical control of properties of ferroelectric liquid crystals. 3. photochemically induced reversible change in spontaneous polarization and electrooptic property. Jpn J Appl Phys. 1995;99(34):13013–13018.
  • Zhong Z-X, Li X-D, Lee SH, et al. Liquid crystal photoalignment material based on chloromethylated polyimide. Appl Phys Lett. 2004;85(13):2520–2522.
  • Li X-D, Zhong Z-X, Lee SH, et al. Liquid crystal photoalignment using soluble photosensitive polyimide. Jpn J Appl Phys. 2006;45:906.
  • He R, Wen P, Zhang H-N, et al. In-situ photocrosslinked hydroxide conductive membranes based on photosensitive poly(arylene ether sulfone) block copolymers for anion exchange membrane fuel cells. J Membrane Sci. 2018;556:73–84.
  • Obi M, Morino S, Ichimura K. Photocontrol of liquid crystal alignment by polymethacrylates with diphenylacetylene side chains. Chem Mater. 1999;11(5):1293–1301.
  • Büchi G, Perry CW, Robb EW. Photochemical reactions. XI. diphenylacetylene1-3. J Org Chem. 1962;27(11):4106–4107.
  • Ota K, Murofushi K, Hoshi T, et al. The primary photochemical process of diphenylacetylene. Tetrahedron Lett. 1974;15(15):1431–1434.
  • Scheffer TJ, Nehring J. Accurate determination of liquid‐crystal tilt bias angles. J Appl Phys. 1977;48(5):1783–1792.
  • Oh S-W, Park J-H, Yoon T-H. Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer. Opt Express. 2015;23(2):1044–1051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.