147
Views
1
CrossRef citations to date
0
Altmetric
Articles

Design and fabrication of 2 kHz nematic liquid crystal variable retarder with reflection mode

, , &
Pages 870-881 | Received 14 Sep 2019, Accepted 27 Oct 2019, Published online: 31 Oct 2019

References

  • Hu C, Xie P, Huo S, et al. A liquid crystal variable retarder-based reflectance difference spectrometer for fast, high precision spectroscopic measurements. Thin Solid Films. 2014;571:543–547.
  • Watad I, Abdulhalim I. Phase-shifted polarimetric surface plasmon resonance sensor using a liquid crystal retarder and a diverging beam. Opt Lett. 2019;44:1607–1610.
  • Yoshida S. Measurement of moving objects with phase-shifting digital holography using liquid crystal retarder. Opt Commun. 2018;420:141–146.
  • August I, Oiknine Y, AbuLeil M, et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder. Sci Rep. 2016;6:23524.
  • Yamashita S, Okoshi T. Performance improvement and optimization of fiber amplifier with a midway isolator. IEEE Photonics Technol Lett. 1992;4:1276–1278.
  • Ma X, Tao S. High-isolation optical isolator using a BiCaInVIG single crystal. Appl Opt. 1992;31:4122–4124.
  • Ellis AD, Widdowson T, Shan X, et al. Three-node 40 Gb/s OTDM network experiment using electro-optic switches. Electron Lett. 1994;30:1333–1334.
  • Honea EC, Beach RJ, Mitchell SC, et al. 183-W, M2=2.4 Yb: YAGQ-switched laser. Opt Lett. 1999;24:154–156.
  • Carrig TJ, Wagner GJ, Sennaroglu A, et al. Mode-locked Cr2+: ZnSe laser. Opt Lett. 2000;25:168–170.
  • Zhang Y, Xuan J, Zhao H, et al. Integrated spectral phase delay calibration technique for a liquid crystal variable retarder used in wide-bandwidth working channel. Opt Laser Technol. 2018;108:186–192.
  • Bouchal P, Čelechovský R, Bouchal Z. Polarization sensitive phase-shifting Mirau interferometry using a liquid crystal variable retarder. Opt Lett. 2015;40:4567–4570.
  • Jörg S, Theodor SK. Liquid crystal phase retarder with broad spectral range. Opt Commun. 2000;176:313–317.
  • Kner P, Chhun BB, Griffis ER, et al. Super-resolution video microscopy of live cells by structured illumination. Nat Methods. 2009;6:339–342.
  • Li D, Shao L, Chen BC, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349:aab3500.
  • Gu D, Winker B, Wen B, et al. Wavefront control with a spatial light modulator containing dual frequency liquid crystal. Proc SPIE. 2004;5553:68–82.
  • Burns DC, Underwood I, Gourlay J, et al. A 256 × 256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator. Opt Commun. 1995;119:623–632.
  • Serati S, Xia XW, Mughal O, et al. High-resolution phase-only spatial light modulators with sub millisecond response. Proc SPIE. 2003;5106:138–145.
  • Peng Z, Wang Q, Liu Y, et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds. Liq Cryst. 2016;43:276–284.
  • Peng ZH, Cao ZL, Yao LS, et al. The review of liquid crystal wavefront corrector with fast response property (in Chinese). Sci Sin-Phys Mech Astron. 2017;47:084203.
  • Cao Z, Xuan L, Hu L, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator. Opt Express. 2005;13:1059–1065.
  • Belyaev VV, Solomatin AS, Chausov DN. Phase retardation vs. pretilt angle in liquid crystal cells with homogeneous and inhomogeneous LC director configuration. Opt Express. 2013;21:4244–4249.
  • Belyaev VV, Solomatin AS, Chausov DN. Measurement of the liquid crystal pretilt angle in cells with homogeneous and inhomogeneous LC director configuration. Appl Opt. 2013;52:3012–3019.
  • Belyaev VV, Solomatin AS, Chausov DN. Phase retardation difference of liquid crystal cells with symmetric and asymmetric boundary conditions. Mol Cryst Liq Cryst. 2014;596:22–29.
  • Jakeman E, Raynes EP. Electro-optic response times in liquid crystals. Phys Lett A. 1972;39:69–70.
  • Chigrinov VG, Belyaev VV. Time characteristics of orientational electrooptical effects in nematic liquid crystals. Sov Phys Crystallogr. 1977;22:344–346.
  • Belyaev VV, Chigrinov VG. Dynamics of the twist effect in nematic liquid crystals: relaxation of angle of inclination of molecules. Sov Phys Crystallogr. 1978;23:614–616.
  • Belyaev VV, Chigrinov VG. The switching dynamics of nematic liquid crystals with low-frequency dispersion of the dielectric anisotropy. Sov Phys Crystallogr. 1978;23:454–457.
  • Yao L, Mu Q, Peng Z, et al. Optimising response of liquid crystal corrector with digital overdriving technique. Liq Cryst. 2013;40:817–821.
  • Peng Z, Liu Y, Yao L, et al. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap. Opt Lett. 2011;36:3608.
  • Cao Z, Mu Q, Hu L, et al. Correction of horizontal turbulence with nematic liquid crystal wavefront corrector. Opt Express. 2008;16:7006–7013.
  • 42nd Committee of Japan Society for the Promotion of Science. Liquid crystal device manual. Huang X, Huang H, Li Z, Translators. Beijing: Aviation industry press; 1992. p. 364.
  • Sun Y, Zhang Z, Ma H. Optimal rubbing angle for reflective in-plane-switching liquid crystal displays. Appl Phys Lett. 2002;81:4907–4909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.