567
Views
6
CrossRef citations to date
0
Altmetric
Invited Article

Sunlight helps self-healing of liquid-crystalline gels of lignin-graft PMMA doped with GO and azobenzene

, , &
Pages 1170-1179 | Received 20 Oct 2019, Published online: 03 Jan 2020

References

  • White S, Sottos N, Geubelle P, et al. Autonomic healing of polymer composites. Nature. 2001;409:794–797.
  • Wool R. Self-healing materials: a review. Soft Matter. 2008;4:400–418.
  • Hager M, Greil P, Leyens C, et al. Self-healing materials. Adv Mater. 2010;22:5424–5430.
  • Ying H, Zhang Y, Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat Commun. 2014;5:3218.
  • He L, Szopinski D, Wu Y, et al. Toward self-healing hydrogels using one-pot thiol–ene click and borax-diol chemistry. ACS Macro Lett. 2015;4:673–678.
  • He Y, Liao S, Jia H, et al. A self-healing electronic sensor based on thermal-sensitive fluids. Adv Mater. 2015;27:4622–4627.
  • Williams G, Ishige R, Cromwell O, et al. Mechanically robust and self-healable superlattice nanocomposites by self-assembly of single-component “sticky” polymer-grafted nanoparticles. Adv Mater. 2015;27:3934–3941.
  • Tuncaboylu D, Sari M, Oppermann W, et al. Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules. 2011;44:4997–5005.
  • Dong J, Ding J, Weng J, et al. Graphene enhances the shape memory of poly (acrylamide-co-acrylic acid) grafted on graphene. Macromol Rapid Commun. 2013;34:659–664.
  • Noro A, Matsushima S, He X, et al. Thermoreversible supramolecular polymer gels via metal–ligand coordination in an ionic liquid. Macromolecules. 2013;46:8304–8310.
  • Kersey F, Loveless D, Craig S. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J Royal Soc Interface. 2007;4:373–380.
  • Nakahata M, Takashima Y, Yamaguchi H, et al. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:511–516.
  • Deng G, Li F, Yu H, et al. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 2012;1:275–279.
  • Brochu A, Craig S, Reichert W. Self‐healing biomaterials. J Biomed Mater Res A. 2011;96A:492–506.
  • Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010;46:4094–4096.
  • Pal S, Agarwal A, Abbott N. Chemically responsive gels prepared from microspheres dispersed in liquid crystals. Small. 2009;5:2589–2596.
  • Kitamura T, Nakaso S, Mizoshita N, et al. Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. J Am Chem Soc. 2005;127:14769–14775.
  • Gong C, Liang J, Hu W, et al. Healable, semitransparent silver nanowire-polymer composite conductor. Adv Mater. 2013;25:4186–4191.
  • Chen W, Gong W, Ye J, et al. Rational design of multistimuli responsive organogels by alternation of hydrogen-bonding and amphiphilic properties. RSC Adv. 2012;2:809–811.
  • Yang R, Peng S, Wan W, et al. Azobenzene based multistimuli responsive supramolecular hydrogels. J Mater Chem C. 2014;2:9122–9131.
  • Li S, Feng Y, Long P, et al. The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. J Mater Chem C. 2017;5(21):2068–5075.
  • Ma S, Li X, Huang S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew Chem Int Ed. 2019;58(9):2655–2659.
  • Li X, Ma S, Hu J, et al. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia Julibrissin leaves. J Mater Chem C. 2019;7(3):622–629.
  • Si Q, Feng Y, Yang W, et al. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm. ACS Appl Mater Interfaces. 2018;10:29909–29917.
  • Qin C, Feng Y, An H, et al. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators. ACS Appl Mater Interfaces. 2017;9(4):4066–4073.
  • Kato T, Hirai Y, Nakaso S, et al. Liquid-crystalline physical gels. Chem Soc Rev. 2007;36:1857–1867.
  • Ni Y, Li X, Hu J, et al. A supramolecular liquid-crystalline polymer organogel: fabrication, multiresponsive and holographic switching properties. Chem Mater. 2019;31(9):3388–3394.
  • Chen D, Liu H, Kobayashi T, et al. Multiresponsive reversible gels based on a carboxylic azo polymer. J Mater Chem. 2010;20:3610–3614.
  • Mizoshita N, Kutsuna T, Hanabusab K, et al. Smectic liquid-crystalline physical gels. Anisotropic self-aggregation of hydrogen-bonded molecules in layered structures. Chem Commun. 1999;9:781–782.
  • Suzuki Y, Mizoshita N, Hanabusa K, et al. Homeotropically oriented nematic physical gels for electrooptical materials. J Mater Chem. 2003;13:2870–2874.
  • Mizoshita N, Suzuki Y, Hanabusa K, et al. Bistable nematic liquid crystals with self-assembled fibers. Adv Mater. 2005;17:692–696.
  • Mizoshita N, Monobe H, Inoue M, et al. The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem Commun. 2002;5:428–429.
  • Yamamoto T, Kawata Y, Yoshida M. Contrasting roles of layered structures in the molecular assembly of liquid crystal matrices on the viscoelastic properties of microparticle/liquid crystal composite gels leading to rigidification and destabilization. J Colloid Interface Sci. 2013;397:131–136.
  • Yamamoto T, Yoshida M. Viscoelastic and photoresponsive properties of microparticle/liquid-crystal composite gels: tunable mechanical strength along with rapid-recovery nature and photochemical surface healing using an azobenzene dopant. Langmuir. 2012;28:8463–8469.
  • Kawata Y, Yamamoto T, Kihara H, et al. Dual self-healing abilities of composite gels consisting of polymer-brush-afforded particles and an azobenzene-doped liquid crystal. ACS Appl Mater Interfaces. 2015;7:4185–4191.
  • Yu H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C. 2014;2(17):3047–3054.
  • Yu H, Ikeda T. Photocontrollable liquid-crystalline actuators. Adv Mater. 2011;23(19):2149–2180.
  • Yu L, Cheng Z, Dong Z, et al. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J Mater Chem C. 2014;2:8501–8506.
  • Yu L, Yu H. Light-powered tumbler movement of graphene oxide/polymer nanocomposites. ACS Appl Mater Interfaces. 2015;7:3834–3839.
  • Cheng Z, Wang T, Li X, et al. NIR-VIS-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl Mater Interfaces. 2015;7(49):27494–27501.
  • Kim Y, Kadla J. Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization. Biomacromolecules. 2010;11:981–988.
  • Qian Y, Zhang Q, Qiu X, et al. CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable pickering emulsions. Green Chem. 2014;16:4963–4968.
  • Wang J, Yao K, Korich A, et al. Combining renewable gum rosin and lignin: towards hydrophobic polymer composites by controlled polymerization. J Polym Sci Part A: Polym Chem. 2011;49:3728–3738.
  • Yu H, Asaoka S, Shishido A, et al. Nanoscale cooperative motions in a novel well-defined triblock copolymer. Small. 2007;3:768–771.
  • Thomsen D, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34:5868–5875.
  • Wang J, Matyjaszewski K. Controlled/”living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.