503
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Electrically switchable birefringent self-assembled nanocomposites: ferroelectric liquid crystal doped with the multiwall carbon nanotubes

, , , ORCID Icon &
Pages 1379-1389 | Received 25 Nov 2019, Accepted 20 Jan 2020, Published online: 27 Jan 2020

References

  • Stamatoiu O, Mirzaei J, Feng X, et al. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. In: Tschierske C, editor. Liquid crystals: materials design and self-assembly. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 331–393.
  • Liquid crystals with nano and microparticles. In: Jan P. F. Lagerwall, Giusy Scalia editors. Singapore: World Scientific; 2017, 2 volume set. p. 920.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12:1387–1412.
  • Lagerwall JPF, Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7:20–45.
  • Węgłowska D, Perkowski P, Chrunik M, et al. The effect of dopant chirality on the properties of self-assembling materials with a ferroelectric order. Phys Chem Chem Phys. 2018;20:9211–9220.
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch. Liq Cryst. 2017;44:748–756.
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of functional multicomponent liquid crystalline mixtures with nano-scale pitch fulfilling deformed helix ferroelectric mode demands. J Mol Liq. 2019;290:111329.
  • Bubnov A, Novotná V, Hamplová V, et al. Effect of multilactate chiral part of liquid crystalline molecule on mesomorphic behaviour. J Mol Struct. 2008;892:151–157.
  • Malik P, Raina KK, Bubnov A, et al. Electro-optic switching and dielectric spectroscopy studies of ferroelectric liquid crystals with low and high spontaneous polarization. Thin Solid Films. 2010;519:1052–1055.
  • Bubnov A, Domenici V, Hamplová V, et al. Orientational and structural properties of ferroelectric liquid crystal with a broad temperature range in the SmC*phase by13C NMR, x-ray scattering and dielectric spectroscopy. J Phys. 2008;21:035102.
  • Bubnov A, Cifelli M, Cigl M, et al. Mesomorphic, structural, electro-optic and dynamic properties of lactic acid derivative and its selectively deuterated isotopomers by means of electro-optics, SAXS, 2H-NMR and neutron spin-echo spectroscopy. Liq Cryst. 2019;1–17.
  • Fitas J, Marzec M, Kurp K, et al. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures. Liq Cryst. 2017;44:1468–1476.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Weinheim, Germany: John Wiley & Sons; 1999.
  • Tabe Y, Urayama K, Matsuyama A, et al. Physics of liquid crystals. Japan: Springer; 2014.
  • Pauluth D, Tarumi K. Advanced liquid crystals for television. J Mater Chem. 2004;14:1219–1227.
  • Abdulhalim I. Non-display bio-optic applications of liquid crystals. Liq Cryst Today. 2011;20:44–60.
  • Abdulhalim I. Liquid crystals beyond displays, chemistry, physics, and applications. In: editors, Quan L, Hoboken NJ. Liquid crystals today. Hoboken, NJ: Wiley & Sons; 2012. p. 600. $141 (hardback), ISBN 1118078617. 2013;22:10-1.
  • Abdulhalim I. Liquid crystal active nanophotonics and plasmonics: from science to devices. J Nanophoton. 2012;6:061001.
  • Abdulhalim I, Moddel G. Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals. Mol Cryst Liq Cryst. 1991;200:79–101.
  • Crawford GP, Eakin JN, Radcliffe MD, et al. Liquid-crystal diffraction gratings using polarization holography alignment techniques. J Appl Phys. 2005;98:123102.
  • Srivastava AK, Pozhidaev EP, Chigrinov VG, et al. Single walled carbon nano-tube, ferroelectric liquid crystal composites: excellent diffractive tool. Appl Phys Lett. 2011;99:201106.
  • Ma Y, Sun J, Srivastava AK, et al. Optically rewritable ferroelectric liquid-crystal grating. EPL (Europhysics Letters). 2013;102:24005.
  • Garbovskiy Y, Glushchenko I. Nano-objects and ions in liquid crystals: ion trapping effect and related phenomena. Crystals. 2015;5:501.
  • Rózański SA, Stannarius R, Kremer F, et al. Structure and dynamics of ferroelectric liquid crystals under random geometrical restrictions. Liq Cryst. 2001;28:1071–1083.
  • Zhang Y, Etxebarria J. Ferroelectric liquid crystals for nonlinear optical applications. In: Liquid crystals beyond displays. Hoboken, NJ: John Wiley & Sons, Inc.; 2012. p. 111–156.
  • Lisetski L, Soskin M, Lebovka N Carbon Nanotubes in Liquid Crystals: fundamental Properties and Applications. In: Bulavin L, Lebovka N, editors. Physics of Liquid Matter: Modern Problems: Proceedings, Kyiv, Ukraine; 2014 May 23–27; Cham: Springer International Publishing; 2015. p. 243–297.
  • Pozhidaev EP, Torgova SI, Barbashov VA, et al. Ferroelectric C* phase induced in a nematic liquid crystal matrix by a chiral non-mesogenic dopant. Appl Phys Lett. 2015;106:062904.
  • Shukla RK, Mirzaei J, Sharma A, et al. Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots. RSC Adv. 2015;5:34491–34496.
  • Gu J, Liang C, Dang J, et al. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Adv. 2016;6:35809–35814.
  • Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liq Cryst. 2019;46:2057–2074.
  • Podgornov FV, Gavrilyak M, Karaawi A, et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion. Liq Cryst. 2018;45:1594–1602.
  • Khushboo SP, Malik P, Raina KK. Size-dependent studies in ferromagnetic nanoparticles dispersed ferroelectric liquid crystal mixtures. Liq Cryst. 2018;45:896–906.
  • Singh D, Singh UB, Pandey MB, et al. Dielectric and electro-optic behaviour of nematic-SWCNT nanocomposites under applied bias field. Liq Cryst. 2019;46:1389–1395.
  • Shukla RK, Raina KK, Haase W. Fast switching response and dielectric behaviour of fullerene/ferroelectric liquid crystal nanocolloids. Liq Cryst. 2014;41:1726–1732.
  • Shukla RK, Liebig CM, Evans DR, et al. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014;4:18529–18536.
  • Shukla RK, Evans DR, Haase W. Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: electrooptic and dielectric parameters influenced by properties of the host, the dopant and the measuring cell. Ferroelectrics. 2016;500:141–152.
  • Scalia G. Liquid crystals of carbon nanotubes and carbon nanotubes in liquid crystals. In: Quan Li, editor. Liquid crystals beyond displays. Hoboken, NJ: John Wiley & Sons, Inc;2012. p. 341–378.
  • Basu R, Iannacchione GS. Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal. J Appl Phys. 2009;106:124312.
  • Gupta SK, Singh DP, Manohar R. SWCNT doped ferroelectric liquid crystal: the electro-optical properties with enhanced dipolar contribution. Curr Appl Phys. 2013;13:684–687.
  • Malik P, Chaudhary A, Mehra R, et al. Electro-optic, thermo-optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films. J Mol Liq. 2012;165:7–11.
  • Prakash J, Choudhary A, Mehta DS, et al. Effect of carbon nanotubes on response time of ferroelectric liquid crystals. Phys Rev E. 2009;80:012701.
  • Schymura S, Scalia G. On the effect of carbon nanotubes on properties of liquid crystals. Philos Trans R Soc A Math Phys Eng Sci. 2013;371:20120261.
  • Scalia G, Lagerwall JPF, Schymura S, et al. Carbon nanotubes in liquid crystals as versatile functional materials. Phys Status Solidi B. 2007;244:4212–4217.
  • Shukla RK, Chaudhary A, Bubnov A, et al. Multi-walled carbon nanotubes-ferroelectric liquid crystal nanocomposites: effect of cell thickness and dopant concentration on electro-optic and dielectric behaviour. Liq Cryst. 2018;45:1672–1681.
  • Shukla RK, Raina KK, Hamplová V, et al. Dielectric behaviour of the composite system: multiwall carbon nanotubes dispersed in ferroelectric liquid crystal. Phase Transitions. 2011;84:850–857.
  • Hegde G, Xu P, Pozhidaev E, et al. Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals. Liq Cryst. 2008;35:1137–1144.
  • Cacace T, García-García A, Zito G, et al. Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy. Opt Express. 2016;24:15954–15964.
  • Kumar P, Sinha A. Electro-optical properties of carbon nanotubes doped ferroelectric liquid crystal. Integr Ferroelectr. 2018;186:71–76.
  • Chaudhary A, Klebanov M, Abdulhalim I. Liquid crystals alignment with PbS nanosculptured thin films. Liq Cryst. 2018;45:3–10.
  • Nie X, Lu R, Xianyu H, et al. Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys. 2007;101:103110.
  • Park KA, Lee SM, Lee SH, et al. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J Phys Chem C. 2007;111:1620–1624.
  • Jeon SY, Shin SH, Jeong SJ, et al. Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field. Appl Phys Lett. 2007;90:121901.
  • Lu S-Y, Chien L-C. Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties. Opt Express. 2008;16:12777–12785.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.