228
Views
6
CrossRef citations to date
0
Altmetric
Invited Article

Fundamental and practical aspects of molecular dynamics using tensorial orientational constraints

, , , & ORCID Icon
Pages 2043-2057 | Received 23 May 2019, Published online: 03 Mar 2020

References

  • Luy B, Frank A, Kessler H. Conformational analysis of drugs by nuclear magnetic resonance spectroscopy. In: Mannhold R, Kubinyi H, Folkers G, et al., editors. Molecular drug properties measurement and prediction. Weinheim: Wiley-VCH; 2008. p. 207–254.
  • Kummerlöwe G, Crone B, Kretschmer M, et al. Residual dipolar couplings as a powerful tool for constitutional analysis: the unexpected formation of tricyclic compounds. Angew Chem Int Ed. 2011;50:2643–2645.
  • Thiele CM. Use of RDCs in rigid organic compounds and some practical considerations concerning alignment media. Concept Magn Reson. 2007;30A:65–80.
  • Kummerlöwe G, Luy B. Residual dipolar couplings as a tool in determining the structure of organic molecules. Trends Anal Chem. 2009;28:483–493.
  • Lange OF, Lakomek NA, Fares C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science. 2008;320:1471–1475.
  • Kummerlöwe G, Luy B. Residual dipolar couplings for the configurational and conformational analysis of organic molecules. Annu Rep NMR Spectrosc. 2009;68:193–232.
  • Gil RR. Constitutional, configurational, and conformational analysis of small organic molecules on the basis of NMR residual dipolar couplings. Angew Chem Int Ed. 2011;50:7222–7224.
  • Liu Y, Sauri J, Mevers E, et al. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science. 2017;356:eaam5349.
  • Williams AJ, Martin GE, Rovnyak D. Modern NMR approaches to the structure elucidation of natural products. Volume 2, data acquisition and applications to compound classes. London: The Royal Society of Chemistry; 2017.
  • Schmidts V. Perspectives in the application of residual dipolar couplings in the structure elucidation of weakly aligned small molecules. Magn Reson Chem. 2017;55:54–60.
  • Waratchareeyakul W, Hellemann E, Gil RR, et al. Application of residual dipolar couplings and selective quantitative NOE to establish the structures of tetranortriterpenoids from Xylocarpus rumphii. J Nat Prod. 2017;80:391–402.
  • Saupe A. Kernresonanzen in kristallinen Flüssigkeiten und in krisatllinflüssigen Lösungen. Teil I Z Naturforschg A. 1964;19:161–171.
  • Saupe A. Recent results in the field of liquid crystals. Angew Chem Int Ed. 1968;7:97–112.
  • Kramer F, Deshmukh MV, Kessler H, et al. Residual dipolar coupling constants: an elementary derivation of key equations. Concept Magn Reson. 2004;21A:10–21.
  • Losonczi JA, Andrec M, Fischer MW, et al. Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson. 1999;138:334–342.
  • Zweckstetter M. NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc. 2008;3:679–690.
  • Navarro-Vázquez A. MSpin-RDC. A program for the use of residual dipolar couplings for structure elucidation of small molecules. Magn Reson Chem. 2012;50:73–79.
  • Burnell EE, de Lange CA. Effects of interaction between molecular internal motion and reorientation on NMR of anisotropic liquids. J Magn Reson. 1980;39:461–480.
  • Burnell EE, De Lange CA. On the average orientation of molecules undergoing large-amplitude conformational changes in anisotropic liquids. Chem Phys Lett. 1980;76:268–272.
  • Schuetz A, Junker J, Leonov A, et al. Stereochemistry of sagittamide A from residual dipolar coupling enhanced NMR. J Am Chem Soc. 2007;129:15114–15115.
  • Trigo-Mouriño P, Santamaría-Fernández R, Sánchez-Pedregal VM, et al. Conformational analysis of an isoquinolinium hydrochloride in water using residual dipolar couplings. J Org Chem. 2010;75:3101–3104.
  • Pérez-Balado C, Sun H, Griesinger C, et al. Residual dipolar coupling enhanced NMR spectroscopy and chiroptics: a powerful combination for the complete elucidation of symmetrical small molecules. Chem: Eur J. 2011;17:11983–11986.
  • Thiele CM, Schmidts V, Bottcher B, et al. On the treatment of conformational flexibility when using residual dipolar couplings for structure determination. Angew Chem Int Ed. 2009;48:6708–6712.
  • Thiele CM, Maliniak A, Stevensson B. Use of local alignment tensors for the determination of relative configurations in organic compounds. J Am Chem Soc. 2009;131:12878–12879.
  • Sun H, Reinscheid UM, Whitson EL, et al. Challenge of large-scale motion for residual dipolar coupling based analysis of configuration: the case of fibrosterol sulfate A. J Am Chem Soc. 2011;133:14629–14636.
  • Emsley JW. Liquid crystalline samples: structure of nonrigid molecules. eMagRes. 2007;1.
  • Burnell EE, de Lange CA. Prediction from molecular shape of solute orientational order in liquid crystals. Chem Rev. 1998;98:2359–2387.
  • Emsley JW, Luckhurst GR, Stockley CP. A theory of orientational ordering in uniaxial liquid-crystals composed of molecules with alkyl chains. Proc Royal Soc A. 1982;381:117–138.
  • Celebre G, De Luca G, Emsley JW, et al. The conformational distribution in diphenylmethane determined by nuclear magnetic resonance spectroscopy of a sample dissolved in a nematic liquid crystalline solvent. J Chem Phys. 2003;118:6417–6426.
  • Di Bari L, Forte C, Veracini CA, et al. An internal order approach to the investigation of intramolecular rotations in liquid crystals by NMR: 3-phenyl-thiophene in PCH and phase IV. Chem Phys Lett. 1988;143:263–269.
  • Catalano D, Bari LD, Veracini CA, et al. A maximum entropy analysis of the problem of the rotameric distribution for substituted biphenyls studied by 1H nuclear magnetic resonance spectroscopy in nematic liquid crystals. J Chem Phys. 1991;94:3928–3935.
  • Berardi R, Spinozzi F, Zannoni C. A multitechnique maximum entropy approach to the determination of the orientation and conformation of flexible molecules in solution. J Chem Phys. 1998;109:3742–3759.
  • Stevensson B, Landersjö C, Widmalm G, et al. Conformational distribution function of a disaccharide in a liquid crystalline phase determined using NMR spectroscopy. J Am Chem Soc. 2002;124:5946–5947.
  • Stevensson B, Sandström D, Maliniak A. Conformational distribution functions extracted from residual dipolar couplings: a hybrid model based on maximum entropy and molecular field theory. J Chem Phys. 2003;119:2738–2746.
  • Landersjo C, Stevensson B, Eklund R, et al. Molecular conformations of a disaccharide investigated using NMR spectroscopy. J Biomol NMR. 2006;35:89–101.
  • Thaning J, Stevensson B, Maliniak A. Molecular structure extracted from residual dipolar couplings: diphenylmethane dissolved in a nematic liquid crystal. J Chem Phys. 2005;123:044507.
  • Di Pietro ME, De Luca G, Celebre G, et al. Conformational and orientational determination from dipolar couplings in a weakly ordering organic-based lyotropic and a strongly ordering thermotropic liquid crystal. Mol Cryst Liq Cryst. 2015;614:39–53.
  • Di Pietro ME, Aroulanda C, Celebre G, et al. The conformational behaviour of naproxen and flurbiprofen in solution by NMR spectroscopy. New J Chem. 2015;39:9086–9097.
  • Di Pietro ME, Celebre G, Aroulanda C, et al. Assessing the stable conformations of ibuprofen in solution by means of residual dipolar couplings. Eur J Pharm Sci. 2017;106:113–121.
  • Di Pietro ME, Celebre G, Salvino RA, et al. The use of residual dipolar couplings for conformational analysis of non-steroidal anti-inflammatory drugs dissolved in weakly ordering media. Liq Cryst. 2018;45:2033–2047.
  • Hess B, Scheek RM. Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Magn Reson. 2003;164:19–27.
  • Meiler J, Blomberg N, Nilges M, et al. A new approach for applying residual dipolar couplings as restraints in structure elucidation. J Biomol NMR. 2000;16:245–252.
  • Clore GM, Gronenborn AM, Bax A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson. 1998;133:216–221.
  • Sass HJ, Musco G, Stahl SJ, et al. An easy way to include weak alignment constraints into NMR structure calculations. J Biomol NMR. 2001;21:275–280.
  • Tjandra N, Marquardt J, Clore GM. Direct refinement against proton-proton dipolar couplings in NMR structure determination of macromolecules. J Magn Reson. 2000;142:393–396.
  • Farès C, Hassfeld J, Menche D, et al. Simultaneous determination of the conformation and relative configuration of archazolide A by using nuclear overhauser effects, J couplings, and residual dipolar couplings. Angew Chem Int Ed. 2008;47:3722–3726.
  • Klages J, Neubauer C, Coles M, et al. Structure refinement of cyclosporin A in chloroform by using RDCs measured in a stretched PDMS-gel. Chembiochem. 2005;6:1672–1678.
  • Schuetz A, Murakami T, Takada N, et al. RDC-enhanced NMR spectroscopy in structure elucidation of sucro-neolambertellin. Angew Chem Int Ed Engl. 2008;47:2032–2034.
  • Salvi N, Salmon L, Blackledge M. Dynamic descriptions of highly flexible molecules from NMR dipolar couplings: physical basis and limitations. J Am Chem Soc. 2017;139:5011–5014.
  • Ozenne V, Bauer F, Salmon L, et al. Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics. 2012;28:1463–1470.
  • Camilloni C, Vendruscolo M. A tensor-free method for the structural and dynamical refinement of proteins using residual dipolar couplings. J Phys Chem. 2015;119:653–661.
  • Wirz LN, Allison JR. Comment on “a tensor-free method for the structural and dynamic refinement of proteins using residual dipolar couplings”. J Phys Chem B. 2015;119:8223–8224.
  • Tomba G, Camilloni C, Vendruscolo M. Determination of the conformational states of strychnine in solution using NMR residual dipolar couplings in a tensor-free approach. Methods. 2018;148:4–8.
  • Sternberg U, Witter R, Ulrich AS. All-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples. J Biomol NMR. 2007;38:23–39.
  • Sternberg U, Klipfel M, Grage SL, et al. Calculation of fluorine chemical shift tensors for the interpretation of oriented F-19-NMR spectra of gramicidin A in membranes. Phys Chem Chem Phys. 2009;11:7048–7060.
  • Sternberg U, Koch F-T, Losso P. COSMOS 6.0. Germany: COSMOS Software GbR; 2007 [cited 2018 Feb]. Available from: http://www.cosmos-software.de/
  • Tzvetkova P, Sternberg U, Gloge T, et al. Configuration determination by residual dipolar couplings: accessing the full conformational space by molecular dynamics with tensorial constraints. Chem. Sci. 2019;10:8774–8791.
  • Di Pietro MED, Sternberg U, Luy B. Molecular dynamics with orientational tensorial constraints: a new approach to probe the torsional angle distributions of small flexible molecules. J. Phys. Chem. B. 2019;123:8480–8491.
  • Kummerlöwe G, Schmitt S, Luy B. Cross-fitting of residual dipolar couplings. Open Spectrosc J. 2010;4:16–27.
  • Trigo-Mourino P, Navarro-Vazquez A, Ying J, et al. Structural discrimination in small molecules by accurate measurement of long-range proton-carbon NMR residual dipolar couplings. Angew Chem Int Ed. 2011;50:7576–7580.
  • Trigo-Mouriño P, de la Fuente MC, Gil RR, et al. Conformational analysis of the anti-obesity drug lorcaserin in water: how to take advantage of long-range residual dipolar couplings. Chem: Eur J. 2013;19:14989–14997.
  • Fares C, Lingnau JBWirtz C. Sternberg u conformational investigations in flexible molecules using orientational NMR constraints in combination with 3J-couplings and NOE distances. Molecules. 2019;24:4417.
  • Altis A, Nguyen PH, Hegger R, et al. Dihedral angle principal component analysis of molecular dynamics simulations. J Chem Phys. 2007;126:244111.
  • Zweckstetter M, Bax A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc. 2000;122:3791–3792.
  • Almond A, Axelsen JB. Physical interpretation of residual dipolar couplings in neutral aligned media. J Am Chem Soc. 2002;124:9986–9987.
  • Ferrarini A. Modeling of macromolecular alignment in nematic virus suspensions. Application to the prediction of NMR residual dipolar couplings. J Phys Chem. 2003;107:7923–7931.
  • Wu B, Petersen M, Girard F, et al. Prediction of molecular alignment of nucleic acids in aligned media. J Biomol NMR. 2006;35:103–115.
  • Berlin K, O’Leary DP, Fushman D. Improvement and analysis of computational methods for prediction of residual dipolar couplings. J Magn Reson. 2009;201:25–33.
  • Frank AO, Freudenberger JC, Shaytan AK, et al. Direct prediction of residual dipolar couplings of small molecules in a stretched gel by stochastic molecular dynamics simulations. Magn Reson Chem. 2015;53:213–217.
  • Wirz LN, Allison JR. Fitting alignment tensor components to experimental RDCs, CSAs and RQCs. J Biomol NMR. 2015;62:25–29.
  • Azurmendi HF, Bush CA. Tracking alignment from the moment of inertia tensor (TRAMITE) of biomolecules in neutral dilute liquid crystal solutions. J Am Chem Soc. 2002;124:2426–2427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.