213
Views
6
CrossRef citations to date
0
Altmetric
Article

Detection of Cecropin B by liquid-crystal biosensor based on AuNPs signal amplification

, , , , &
Pages 1794-1802 | Received 31 Oct 2019, Accepted 10 Feb 2020, Published online: 02 Mar 2020

References

  • Chen X, Zhu FM, Cao YH, et al. Novel expression vector for secretion of cecropin AD in bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Chemother. 2009;53(9):3683–3689.
  • Cole AM, Wood MP, Eade CR. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr Hiv Res. 2012;10(1):61–72.
  • Suttmann H, Retz M, Paulsen F, et al. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 2008;8(1):5–11.
  • Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides – challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids. 2011;164(8):766–781.
  • Vargas CY, Verónica A, Cardenas KJ, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against gram-positive and gram-negative strains[J]. RSC Adv. 2019;9(13):7239–7245.
  • Tan L, He R, Chen K, et al. Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles. Microchim Acta. 2016;183(4):1469–1477.
  • Tölgyesi Á, Barta E, Sohn M, et al. Determination of antimicrobial residues in honey by liquid chromatography tandem mass spectrometry. Food Anal Methods. 2018;11:2043–2055.
  • Feng H, Tong X, Li W, et al. Indirect competitive enzyme-linked immunosorbent assay of tris-(2,3-dibromopropyl) isocyanurate with monoclonal antibody. Talanta. 2014;128:434–444.
  • Man Y, Lv X, Iqbal J, et al. Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6 and of tumor necrosis factor α using gold nanoparticles as labels. Mikrochim Acta. 2015;182(3–4):597–604.
  • Zhang J, Su XX, Yang D, et al. Label-free liquid crystal biosensor for Cecropin B detection. Talanta. 2018;186:60–64.
  • Heesang K, An Z, Jang CH, et al. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem J. 2018;141:71–79.
  • Munir S, Park SY. Liquid crystal-Based DNA biosensor for myricetin detection. Sens Actuators B Chem. 2016;233:559–565.
  • Zhou CH, Zi QJ, Wang J, et al. Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles. Mikrochim Acta. 2019;186(1):3131–3139.
  • An Z, Jang CH. Sensitive and selective method for detecting cysteine based on optical properties of liquid crystal. Sens Actuators B Chem. 2018;269:135–142.
  • Fu X, Liu Y, Qiu R, et al. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer. Biochem Biophys Rep. 2018;13:73–77.
  • Clerico A, Franzini M, Masotti S, et al. State of the art of immunoassay methods for B-type natriuretic peptides: an update. Crit Rev Clin Lab Sci. 2015;52(2):56–69.
  • Hussain Z, Qazi F, Ahmed MI, et al. Liquid crystals based sensing platform-technological aspects. Biosens Bioelectron. 2016;85:110–127.
  • Skaife JJ, Abbott NL. Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens. Langmuir. 2000;16(7):3529–3536.
  • Gupta VK. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279(5359):2077–2080.
  • Shah RR. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science. 2001;293(5533):1296–1299.
  • Li X, Li G, Yang M, et al. Gold nanoparticle based signal enhancement liquid crystal biosensors for tyrosine assays. Sens Actuators B Chem. 2015;215:152–158.
  • Zhao D, Peng Y, Xu L, et al. Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin. ACS Appl Mater Interfaces. 2015;7(42):23418–23422.
  • Su XX, Huo WJ, Yang D, et al. Label-free liquid crystal immunosensor for detection of HBD-2. Talanta. 2019;203:203–209.
  • Shen J, He FJ, Chen LC, et al. Liquid crystal-based detection of DNA hybridization using surface immobilized single-stranded DNA. Mikrochim Acta. 2017;184(5):3137–3144.
  • S L L, Huang S, Bi X, et al. Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. Langmuir. 2009;25(1):311–316.
  • Yang S, Wu C, Tan H, et al. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal Chem. 2013;85(1):14–18.
  • Hu QZ, Jang CH. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Colloids Surf B. 2011;88(2):622–626.
  • Yang L, Liu S, Zhang Q, et al. Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode. Talanta. 2012;89:136–141.
  • Tang H, Chen J, Nie LH, et al. A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. Biosens Bioelectron. 2007;22(6):1061–1067.
  • Yu D, Zeng Y, Qi Y, et al. A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron. 2012;38(1):270–277.
  • Wang Z, Ma L. Gold nanoparticle probes. Coord Chem Rev. 2009;253(11–12):1607–1618.
  • Wang YJ, Jiang M, Shan YQ, et al. Nano polythionine-based electrochemiluminescence biosensor for detection of the p16 INK4a, gene using RuAg@AuNPs core-shell nanocomposites as DNA labels. J Lumin. 2018;201:135–142.
  • Faulk W. An immunocolloid method for the electron microscope. Immunochem. 1971;8(11):1081–1083.
  • Elghanian R. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–1081.
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301(5641):1884–1886.
  • Porte G. Tilted alignment of MBBA induced by short-chain surfactants. J Phys. 1996;37:1245–1252.
  • Zaluzhna O, Li Y, Zangmeister C, et al. Mechanistic insights on one-phase vs. two-phase Brust-Schiffrin method synthesis of Au nanoparticles with dioctyl-diselenides. Chem Commun. 2011;48(3):362–364.
  • Perala SRK, Kumar S. On the mechanism of metal nanoparticle synthesis in the Brust–Schiffrin method. Langmuir. 2013;29(31):9863–9873.
  • Jiang L, Tang Y, Liow C, et al. Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. Small. 2013;9:705–710.
  • Nayef UM, Khudhair IM, Pietsch U. Synthesis of gold nanopartiles chemically doped with porous silicon for organic vapor sensor by using photoluminescence. Opt Int J Light Electron Opt. 2017;154:398–404.
  • FRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–22.
  • Clanton R, Gonzalez A, Shankar S, et al. Rapid synthesis of, 125 I integrated gold nanoparticles for use in combined neoplasm imaging and targeted radionuclide therapy. Appl Radiat Isot. 2018;131:49–57.
  • Oliver C. Preparation of Colloidal Gold. Methods Mol Biol. 1994;34:299–302.
  • Anthony J, Richard E, Ship YL, et al. Preparation of antibody-conjugated gold nanoparticles. Mater Lett. 2009;63(21):1876–1879.
  • Perera GS, Nettles CB, Zhou Y, et al. Direct observation of ion pairing at the liquid/solid interfaces by surface enhanced raman spectroscopy. Langmuir. 2015;31(33):8998–9005.
  • Wang Y, Wang L, Zhang J, et al. Preparation of colloidal gold immunochromatographic strip for detection of paragonimiasis skrjabini. Plos One. 2014;3(9):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.