326
Views
31
CrossRef citations to date
0
Altmetric
Article

New architectures of supramolecular H-bonded liquid crystal complexes based on dipyridine derivatives

, ORCID Icon & ORCID Icon
Pages 1811-1824 | Received 18 Sep 2019, Accepted 18 Feb 2020, Published online: 04 Mar 2020

References

  • Bradfield A, Jones B. Two apparent cases of liquid crystal formation. J Chem Soc. 1929;2660–2661.
  • Bennett G, Jones B. 94. Mesomorphism and polymorphism of some p-alkoxybenzoic and p-alkoxycinnamic acids. Journal of the Chemical Society (Resumed). 1939; 420–425. DOI:10.1039/JR9390000420
  • Gray GW, Jones B The mesomorphic transition points of the para-normal-alkoxybenzoic acids-a correction. Royal Soc Chemistry Thomas Graham House, Science Park, Milton Rd, Cambridge; 1953. p. 4179–4180.
  • Kato T, Frechet JM. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J Am Chem Soc. 1989;111:8533–8534.
  • Ahmed H, Hagar M, Alaasar M, et al. Wide nematic phases induced by hydrogen-bonding. Liq Cryst. 2019;46:550–559.
  • Ahmed HA, Hagar M, Alhaddad OA. Phase behavior and DFT calculations of laterally methyl supramolecular hydrogen-bonding complexes. Crystals. 2019;9:133.
  • Ahmed H, Hagar M, Aljuhani A. Mesophase behavior of new linear supramolecular hydrogen-bonding complexes. RSC Adv. 2018;8:34937–34946.
  • Ahmed H, Naoum M. Mesophase behaviour of azobenzene-based angular supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2016;43:222–234.
  • Kato T, Wilson PG, Fujishima A, et al. Hydrogen-bonded liquid crystals. A novel mesogen incorporating nonmesogenic 4, 4′-bipyridine through selective recognition between hydrogen bonding donor and acceptor. Chem Lett. 1990;19:2003–2006.
  • Kato T, Frechet JM, Wilson PG, et al. Hydrogen-bonded liquid crystals. Novel mesogens incorporating nonmesogenic bipyridyl compounds through complexation between hydrogen-bond donor and acceptor moieties. Chem Mater. 1993;5:1094–1100.
  • Kato T, Fréchet JM. Hydrogen bonding and the self‐assembly of supramolecular liquid‐crystalline materials. Macromolecular Symposia, Wiley Online Library; 1995. p. 311–326.
  • Kang Y-S, Kim H, Zin W-C. Phase behaviour of hydrogen-bonded liquid crystalline complexes of alkoxycinnamic acids with 4, 4ʹ-bipyridine. Liq Cryst. 2001;28:709–715.
  • Arakawa Y, Sasaki Y, Tsuji H. Supramolecular hydrogen-bonded liquid crystals based on 4-n-alkylthiobenzoic acids and 4, 4′-bipyridine: their mesomorphic behavior with comparative study including alkyl and alkoxy counterparts. J Mol Liq. 2019;280:153–159.
  • Sambyal A, Kour G, Sharma S, et al. Studies of an intermolecular hydrogen-bonded complex of butyloxy benzoic acid and dipyridyl ethylene. Mol Cryst Liq Cryst. 2015;608:135–145.
  • Ebenezer S, Muthiah PT. Supramolecular architectures in the co-crystals involving carboxylic acids and 1, 2-bis (4-pyridyl) ethane, an extended bipyridyl type ligand. J Mol Struct. 2011;990:281–289.
  • Mallia VA, George M, Das S. Photochemical phase transition in hydrogen-bonded liquid crystals. Chem Mater. 1999;11:207–208.
  • Balaban AT, Oniciu DC, Katritzky AR. Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev. 2004;104:2777–2812.
  • Zhang G, Ma J, Wen J. Interchain impacts on electronic structures of heterocyclic oligomers and polymers containing group 14, 15, and 16 heteroatoms: quantum chemical calculations in combination with molecular dynamics simulations. J Phys Chem A. 2007;111:11670–11679.
  • Zajac M, Hrobárik P, Magdolen P, et al. Donor–π-acceptor benzothiazole-derived dyes with an extended heteroaryl-containing conjugated system: synthesis, DFT study and antimicrobial activity. Tetrahedron. 2008;64:10605–10618.
  • Acharya R, Cekli S, Zeman IV CJ, et al. Effect of selenium substitution on intersystem crossing in π-conjugated donor–acceptor–donor chromophores: the LUMO matters the most. J Phys Chem Lett. 2016;7:693–697.
  • Raychev D, Guskova O, Seifert G, et al. Conformational and electronic properties of small benzothiadiazole-cored oligomers with aryl flanking units: thiophene versus furan. Comput Mater Sci. 2017;126:287–298.
  • Kobilka BM, Hale BJ, Ewan MD, et al. Influence of heteroatoms on photovoltaic performance of donor–acceptor copolymers based on 2, 6-di (thiophen-2-yl) benzo [1, 2-b: 4, 5-b′] difurans and diketopyrrolopyrrole. Polym Chem. 2013;4:5329–5336.
  • Ahmed H, Hagar M, Alhaddad O. New chair shaped supramolecular complexes-based aryl nicotinate derivative; mesomorphic properties and DFT molecular geometry. RSC Adv. 2019;9:16366–16374.
  • Galewski Z. Liquid crystalline properties of 4-alkoxy-aniline-4′-alkoxy-anilines. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1994;249:43–49.
  • Gray GW. Thermotropic liquid crystals. Chichester: John Wiley & Sons, Ltd; 1987.
  • Dave JS, Menon M. Azomesogens with a heterocyclic moiety. Bull Mater Sci. 2000;23:237–238.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9:228.
  • Paterson DA, Crawford CA, Pociecha D, et al. The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4′-yl)-6-(4-alkyloxyanilinebenzylidene-4′-oxy) hexanes. Liq Cryst. 2018;45:2341–2351.
  • Hagar M, Ahmed H, El-Sayed T, et al. Mesophase behavior and DFT conformational analysis of new symmetrical diester chalcone liquid crystals. J Mol Liq. 2019;285:96–105.
  • Hagar M, Ahmed H, Alhaddadd O. DFT calculations and mesophase study of coumarin esters and its azoesters. Crystals. 2018;8:359.
  • Hagar M, Soliman SM, Ibid F, et al. Quinazolin-4-yl-sulfanylacetyl-hydrazone derivatives; synthesis, molecular structure and electronic properties. J Mol Struct. 2013;1049:177–188.
  • Soliman SM, Hagar M, Ibid F, et al. Experimental and theoretical spectroscopic studies, HOMO–LUMO, NBO analyses and thione–thiol tautomerism of a new hybrid of 1, 3, 4-oxadiazole-thione with quinazolin-4-one. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:270–279.
  • Hagar M, Soliman SM, Ibid F, et al. Synthesis, molecular structure and spectroscopic studies of some new quinazolin-4 (3H)-one derivatives; an account on the N-versus S-alkylation. J Mol Struct. 2016;1108:667–679.
  • Aboelnaga A, Hagar M, Soliman SM. Ultrasonic synthesis, molecular structure and mechanistic study of 1, 3-dipolar cycloaddition reaction of 1-alkynylpyridinium-3-olate and acetylene derivatives. Molecules. 2016;21:848.
  • Hagar M, Ahmed H, Alhaddad O. Experimental and theoretical approaches of molecular geometry and mesophase behaviour relationship of laterally substituted azopyridines. Liq Cryst. 2019;46:1440–1451.
  • Ahmed HA, Hagar M, El-Sayed TH, et al. Schiff base/ester liquid crystals with different lateral substituents: mesophase behaviour and DFT calculations. Liq Cryst. 2019;46:1156–1166.
  • Nafee SS, Hagar M, Ahmed HA, et al. The synthesis of new thermal stable schiff base/ester liquid crystals: a computational, mesomorphic, and optical study. Molecules. 2019;24:3032.
  • Nafee SS, Hagar M, Ahmed HA, et al. New two rings Schiff base liquid crystals; ball mill synthesis, mesomorphic, Hammett and DFT studies. J Mol Liq. 2019;299:112161.
  • Nafee SS, Ahmed H, Hagar M. Theoretical, experimental and optical study of new thiophene-based liquid crystals and their positional isomers. Liq Cryst. 2020;1–12. DOI:10.1080/02678292.2019.1710778
  • Alhaddad O, Ahmed H, Hagar M. Experimental and theoretical approaches of new nematogenic chair architectures of supramolecular H-bonded liquid crystals. Molecules. 2020;25:365.
  • Chen R, An Z, Wang W, et al. Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liq Cryst. 2017;44:1515–1524.
  • Hagar M, Ahmed HA, Saad GR. Mesophase stability of new schiff base ester liquid crystals with different polar substituents. Liq Cryst. 2018;45:1324–1332.
  • Hagar M, Ahmed HA, Alhaddadd OA. DFT calculations and mesophase study of coumarin esters and its azoesters. Crystals. 2018;8:359.
  • Hagar M, Ahmed HA, Saad GR. Synthesis and mesophase behaviour of Schiff base/ester 4-(arylideneamino)phenyl-4″-alkoxy benzoates and their binary mixtures. J Mol Liq. 2019;273:266–273.
  • Ahmed HA, Hagar M, Saad G. Impact of the proportionation of dialkoxy chain length on the mesophase behaviour of schiff base/ester liquid crystals; experimental and theoritical study. Liq Cryst. 2019;46:1611–1620.
  • Paterson DA, Gao M, Kim Y-K, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12:6827–6840.
  • Sarkar DD, Deb R, Chakraborty N, et al. Cholesterol-based dimeric liquid crystals: synthesis, mesomorphic behaviour of frustrated phases and DFT study. Liq Cryst. 2013;40:468–481.
  • Majumdar K, Mondal S, Sinha RK. Synthesis and characterization of novel cholesterol based mesogenic compounds using ‘click’chemistry. New J Chem. 2010;34:1255–1260.
  • Alnoman RB, Parveen S, Hagar M, et al. A new chiral boron–dipyrromethene (BODIPY)–based fluorescent probe: molecular docking, DFT, antibacterial and antioxidant approaches. J Biomol Struct Dyn. 2019;1–19. DOI:10.1080/07391102.2019.1701555
  • Frisch M, Trucks G, Schlegel HB, et al. Gaussian 09, revision a. 02. Vol. 200. Wallingford, CT: Gaussian. Inc; 2009.
  • Dennington R, Keith T, Millam J GaussView, version 5. Shawnee Mission, KS: Semichem Inc; 2009.
  • Cleland W, Kreevoy MM. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994;264:1887–1890.
  • Lizu M, Lutfor M, Surugau N, et al. Synthesis and characterization of ethyl cellulose–based liquid crystals containing azobenzene chromophores. Mol Cryst Liq Cryst. 2010;528:64–73.
  • Martinez-Felipe A, Cook AG, Abberley JP, et al. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv. 2016;6:108164–108179.
  • Martínez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–437.
  • Ghanem A, Noel C. FTIR investigation of two alkyl-p-terphenyl-4, 4 ″-dicarboxylates in their crystalline, smectic and isotropic phases. Mol Cryst Liq Cryst. 1987;150:447–472.
  • DA P, Martínez-Felipe A, Jansze SM, et al. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscopy. Liq Cryst. 2015;42:928–939.
  • Walker R, Pociecha D, Abberley J, et al. Spontaneous chirality through mixing achiral components: a twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Comm. 2018;54:3383–3386.
  • Odinokov S, Iogansen A. Torsional γ (OH) vibrations, fermi resonance [2γ (OH)⇐ ν (OH)] and isotopic effects in ir spectra of H-complexes of carboxylic acids with strong bases. Spectrochimica Acta Part A. 1972;28:2343–2350.
  • Babkov L, Korolevich M, Moiseikina E. Hydrogen bonding, IR spectrum, and the structure of methyl-β-D-glucopyranoside. J Struct Chem. 2012;53:55–62.
  • Gray GW. Molecular structure and the properties of liquid crystals. London, UK: Academic press, Inc; 1962.
  • Imrie C, Taylor L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq Cryst. 1989;6:1–10.
  • Ghara M, Pan S, Deb J, et al. A computational study on structure, stability and bonding in noble gas bound metal nitrates, sulfates and carbonates (metal= Cu, Ag, Au). J Chem Sci. 2016;128:1537–1548.
  • Meredith GR, VanDusen J, Williams DJ. Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers. Macromolecules. 1982;15:1385–1389.
  • Khoo I-C, Wu S-T Optics and nonlinear optics of liquid crystals: world scientific; 1993.
  • Chemla DS. Nonlinear optical properties of organic molecules and crystals. Elsevier, Academic Press; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.