384
Views
18
CrossRef citations to date
0
Altmetric
Invited Article

Applications of Tamm plasmon-liquid crystal devices

Pages 1223-1231 | Received 31 Dec 2019, Published online: 02 Mar 2020

References

  • Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Rep. 2005;408:131–314.
  • Kim KY, editor. Plasmonics - Principles and applications. London (UK): IntechOpen Limited; 2012.
  • Maier S, editor. Plasmonics: fundamentals and applications. New York (NY): Springer; 2007.
  • Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter. 2002;14:R597.
  • Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B. 1999;54:3–15.
  • Kabashin AV, Patskovsky S, Grigorenko AN. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express. 2009;17:21191–21204.
  • Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B. 2007;76:165415.
  • Gazzano O, de Vasconcellos SM, Gauthron K, et al. Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys Rev Lett. 2011;107:247402.
  • Zhang WL, Wang F, Rao YJ, et al. Novel sensing concept based on optical Tamm plasmon. Opt Express. 2014;22:14524–14529.
  • Auguié B, Fuertes MC, Angelomé PC, et al. Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics. 2014;1:775−780.
  • Huang S-G, Chen K-P, Jeng S-C. Phase sensitive sensor on Tamm plasmon devices. Opt Mater Express. 2017;7:1267.
  • Kumar S, Maji PS, Das R. Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sens Actuators A Phys. 2017;260:10–15.
  • Luo X, Zhai X, Wang L, et al. Tunable terahertz narrow-band plasmonic filter based on optical Tamm plasmon in dual-section InSb slot waveguide. Plasmonics. 2017;12:509.
  • Symonds C, Lemaître A, Senellart P, et al. Lasing in a hybrid GaAs/silver Tamm structure. Appl Phys Lett. 2012;100:121122.
  • Symonds C, Lheureux G, JHugonin JP, et al. Confined Tamm plasmon lasers. Nano Lett. 2013;13:3179−3184.
  • Abdulhalim I. Liquid crystal active nanophotonics and plasmonics: from science to devices. J Nanophotonics. 2012;6:061001.
  • Khoo IC. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Prog Quantum Electron. 2014;38:77.
  • Dickson W, Wurtz GA, Evans PR, et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 2008;8:281–286.
  • Liu Q, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14:4071–4077.
  • Kossyrev PA, Yin A, Cloutier SG, et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005;5:1978–1981.
  • Chu KC, Chao CY, Chen YF, et al. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl Phys Lett. 2006;89:103107.
  • Franklin D, Chen Y, Vazquez-Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun. 2015;6:7337.
  • Olson J, Manjavacas A, Basu T, et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano. 2016;10:1108.
  • Xie Z-W, Yang J-H, Vashistha V, et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt Express. 2017;25:30764.
  • Franklin D, Frank R, Wu S-T, et al. Actively addressed single pixel full-colour plasmonic display. Nat Commun. 2017;8:15209.
  • Vetrov SY, Pyatnov MV, Timofeev IV. Surface modes in photonic cholesteric liquid crystal—phase plate—metal structure. Opt Lett. 2014;39:2743–2746.
  • Vetrov SY, Pyatnov MV, Timofeev IV. Spectral and polarization properties of a cholesteric liquid crystal—phase plate—metal structure. J Opt. 2015;18:015103.
  • Pyatnov MV, Vetrov SY, Timofeev IV. Localized optical states in a structure formed by two oppositely handed cholesteric liquid crystal layers and a metal. Liq Cryst. 2017;44:674–678.
  • Pyatnov MV, Vetrov SY, Timofeev IV. Localized optical modes in a defect-containing liquid-crystal structure adjacent to the metal. J Opt Soc Am B. 2017;34:2011–2017.
  • Maxim V, Pyatnov MV, Timofeev IV, et al. Coupled chiral optical Tamm states in cholesteric liquid crystals. Photonics. 2018;5:30.
  • Cheng H-C, Kuo C-Y, Hung Y-J, et al. Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl. 2018;9:064034.
  • Buchnev O, Belosludtsev A, Reshetnyak V, et al. Observing and controlling a Tamm plasmon at the interface with a metasurface. arXiv:1909.05538v2 [physics.optics]. [cited 2019 Dec 31]:[7 p.]. Author’s manuscript available at https://arxiv.org/abs/1909.05538
  • Takatoh K, Hasegawa M, Koden M, et al. Alignment technologies and applications of liquid crystal devices. Oxon: Taylor & Francis; 2005.
  • Chigrinov VG, Kozenkov VM, Kwok HS. Photoalignment of liquid crystalline materials: physics and applications. West Sussex: John Wiley & Sons Ltd; 2008.
  • Kado H, Yokoyama K, Tohda T. Atomic force microscopy using ZnO whisker tip. Rev Sci Instrum. 1992;63:3330.
  • Ouchi Y, Mori I, Sei M, et al. Polarized XANES studies on the rubbed polyimide for liquid crystal alignment; new applicability to the tribology of the polymer systems. Physica B. 1995;208:407–408.
  • Shen YR. Surface second harmonic generation: a new technique for surface studies. Annu Rev Mater Sci. 1986;16:69–86.
  • Geary JM, Goodby JW, Kmetz AR, et al. The mechanism of polymer alignment of liquid‐crystal materials. J Appl Phys. 1987;62:4100.
  • Chang C-Y, Chen Y-H, Tsai Y-L, et al. Tunability and optimization of coupling efficiency in Tamm plasmon modes. IEEE J Sel Top Quantum Electron. 2015;21:4600206.
  • Lu Y. Measurements of refractive index of thin films by using Tamm plasmon [master’s thesis]. Tainan: National Chiao Tung University; 2018.
  • Wu S-T, Yang D-K. Reflective liquid crystal displays. West Sussex: John Wiley & Sons Ltd; 2001.
  • Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev. 2000;100:1847−1874.
  • Lin TH, Fuh AY-G. Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films. Appl Phys Lett. 2005;87:011106.
  • Huang Y-H, Zhang S-C. Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals. Opt Lett. 2011;36:4563–4565.
  • Huang Y-H, Zhang S-C. Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals. Appl Opt. 2012;51:5780–5784.
  • Chambers RC, Bell EJ, Records TM, et al. Cholesteric liquid crystal displays as optical sensors of barbiturate binding. Liq Cryst. 2007;34:1221−1226.
  • Eelkema R, Pollard MM, Katsonis N, et al. Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc. 2006;128:14397−14407.
  • Kirchner N, Zedler L, Mayerhofer TG, et al. Functional liquid crystal films selectively recognize amine vapours and simultaneously change their colour. Chem Commun. 2006;14:1512−1514.
  • Morisaki T, Ono H. Electromagnetic numerical characterization of the laser-induced liquid crystal lens by finite-difference time domain method. AZo J Mater. 2005:6. [cited 2019 Dec 30]. doi:10.2240/azojomo0105.
  • Li J, Wen C-H, Gauza S, et al. Refractive indices of liquid crystals for display applications. J Disp Technol. 2005;1:51–61.
  • Zhou H, Yang G, Wang K, et al. Multiple optical Tamm states at a metal-dielectric mirror interface. Opt Lett. 2010;35:4112.
  • Cheng H-C. Tunable Tamm plasmon devices [master’s thesis]. Tainan: National Chiao Tung University; 2016.
  • Gauza S, Wang CH, Wen C-H, et al. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466.
  • Gauza S, Wen C-H, Wu S-T, et al. Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals. Jpn J Appl Phys. 2004;43:7634–7638.
  • Dabrowski R, Dziaduszek J, Ziolek A, et al. Low viscosity, high birefringence liquid crystalline compounds and mixtures. Opto-Electron Rev. 2007;15:47–51.
  • Herman J, Kula P. Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties. Liq Cryst. 2017;44:1462–1467.
  • Souk J, Morozumi S, Luo F‐C, et al. editors. Flat panel display manufacturing. West Sussex (UK): John Wiley & Sons Ltd; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.