383
Views
11
CrossRef citations to date
0
Altmetric
Article

The solvatochromism, electronic structure, electric dipole moments and DFT calculations of benzoic acid liquid crystals

Pages 1435-1451 | Received 23 Dec 2019, Accepted 19 Feb 2020, Published online: 04 Mar 2020

References

  • Schadt M. Liquid crystal materials and liquid crystal displays. Ann Rev Mater Sci. 1997;27:305–379.
  • Demus D, Goodby JW, Gray GW, et al. Handbook of liquid crystals. Weinheim (Germany): Wiley-VCH; 1998.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2005;45:38–68.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36:2096–2124.
  • Tschierske C. Micro-segregation, molecular shape and molecular topology–partners for the design of liquid crystalline materials with complex mesophase morphologies. J Mater Chem. 2001;11:2647–2671.
  • Jones JC, Towler MJ, Hughes JR. Fast, high-contrast ferroelectric liquid crystal displays and the role of dielectric biaxiality. Displays. 1993;14(2):86–93.
  • Lagerwall ST. Ferroelectric and anti ferroelectric liquid crystals. Weinheim (Germany): Wiley-VCH; 1999.
  • Öztürk E, Ocak H, Çakar F, et al. Investigation of thermodynamic properties of 4-decyloxybiphenyl-4′-carboxylic acid liquid crystal and preparation of polymer dispersed liquid crystal composite. J Mol Liq. 2018;265:24–30.
  • Meyer RB, Liebert L, Strzelecki L, et al. Ferroelectric liquid crystals. J Physique Lett. 1975;36:69–71.
  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Mater. 2011;4:206–259.
  • Prabu NSP, Mohan MMLN. Thermal analysis of hydrogen bonded benzoic acid liquid crystals. J Therm Anal Calorim. 2013;113:811–820.
  • Okumuş M. Synthesis and characterization of hydrogen bonded liquid crystal complexes by 4-octyloxy benzoic acid and some dicarboxylic acids. J Mol Liq. 2018;266:529–534.
  • Martínez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–435.
  • Ahmed HA, Hagar M, Alaasar M, et al. Wide nematic phases induced by hydrogen-bonding. Liq Cryst. 2019;46:550–559.
  • Sangameswari G, Prabu NPS, Mohan M. A detailed study of hydrogen bonded ferroelectric mesogens formed between alkyl and alkyloxy benzoic acids with carbamyl glutamic acid. Liq Crys. 2018;45:431–449.
  • Sivasri J, Pardhasaradhi P, Madhav BTP, et al. Birefringence studies on alkoxy benzoic acids with dispersed F.e3O4 nanoparticles. Liq Crys. 2019. DOI:10.1080/02678292.2019.1647571
  • Jansze SM, Martinez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by hydrogen bonding. Angew Chem-Int Ed. 2015;54:643–646.
  • Paterson DA, Martinez-Felipe A, Jansze SM, et al. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscopy. Liq Crys. 2015;42:928–939.
  • Martinez-Felipe A, Cook AG, Wallage MJ, et al. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature Fourier transform infrared spectroscopic study. Pha Trans. 2014;87:1191–1210.
  • Martinez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–437.
  • Alaasar M, Tschierske C. Nematic phases driven by hydrogen-bonding in liquid crystalline nonsymmetric dimers. Liq Cryst. 2019;46:124–130.
  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: a twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Com. 2018;54:3383–3386.
  • Villanueva-Gracia M, Gutierrez-Parra RN, Martinez-Richa A, et al. Quantitative structure-property relationships to estimate nematic transition temperatures in thermotropic liquid crystals. J Mol Struct (THEOCHEM). 2005;727:63–69.
  • Singh S. Phase transitions in liquid crystals. Phys Rep. 2005;324:107–269.
  • Binnemans K. Ionic liquid crystals. Chem Rev. 2000;105:4148–4204.
  • Ojha PD, Pisipati VGKM. Molecular ordering of a cyano compound at a displacive transition temperature: a statistical analysis based on quantum mechanics and computer simulations. Liq Cryst. 2002;29(7):979–984.
  • Demus D, Inukai T. Calculation of molecular, dielectric and optical properties of 4ʹ-n-pentyl-4-cyano-biphenyl (5CB). Liq Cryst. 1999;26(9):1257–1266.
  • Belyaev BA, Drokin NA, Shabanov VF, et al. Dielectric properties of liquid crystals of the cyano derivative compounds with different fragments in the molecular core. Phys Solid State. 2004;46(3):574–578.
  • Clark SJ, Adam CJ, Ackland GJ, et al. Properties of liquid crystal molecules from first principles computer simulation. Liq Cryst. 1997;22(4):469–475.
  • Eikelschulte F, Yakovenko S, Paschek D, et al. Electrostatic properties of cyano-containing mesogens. Liq Cryst. 2000;27(9):1137–1146.
  • Richardson PR, Bates SP, Crain J, et al. Structure and properties of isolated liquid crystal molecules: jet Spectroscopy and ab initio calculations of 4-cyano biphenyl. Liq Cryst. 2000;27(6):845–850.
  • Dominguez H, Velasco E, Alejandre J. Stress anisotropy in liquid crystal line phases. Mol Phys. 2002;100(16):2739–2744.
  • Matsushima J, Takanishi Y, Ishikawa K, et al. Transition moment orientation and rotational bias of three carbonyl groups in large polarization FLCs observed by polarized FTIR. Liq Cryst. 2002;29(1):27–37.
  • de Gennes PG, Prost J. The physics of liquid crystals. Oxford (UK): Clarendon; 1993.
  • Chandrasekhar S. Liquid crystals. Great Britain: Cambridge University Press; 1992.
  • Collings PJ, Hird M. Introduction to liquid crystals-chemistry and physics. USA: Taylor and Francis; 1997.
  • Iannacchione GS. Review of liquid-crystal Phase transitions with quenched random disorder. Flu Pha Equi. 2004;222–223:177–187.
  • Pajak J, Rospenk M, Galewski Z, et al. Structure and liquid crystalline properties of 2-hydroxyazo benzenes. X-ray diffraction, infrared and DFT theoretical studies. J Mol Struct. 2004;700:191–197.
  • Nazarov A, Barabanova N, Dmitry B, et al. Electronic polarization anisotropy of carboxylic acids dimers. Bull MRSU Series. 2015;3:48–55.
  • Priestly EB. Introduction to liquid crystals. New York (NY): Plenum; 1975.
  • Blinov LM. Electro optic effects in liquid crystals. Berlin: Springer-Verlag; 1994.
  • Clark MG, Harrison KJ, Raynes EP. Liquid crystal materials and devices. Phys Technol. 1980;11:232–244.
  • Lapointe CP, Mason TG, Smalyukh II. Shape-controlled colloidal interactions in nematic liquid crystals. Science. 2009;326:1083–1086.
  • Sebastian N, Lafuente MRD, Loez DO, et al. Dielectric and thermo dynamic study on the liquid crystal dimer α-(4-Cyanobiphenyl-4′-oxy)-ω-(1-pyrenimine benzylidene-4′-oxy)undecane (CBO11O•Py). J Phys Chem B. 2011;115:9766–9775.
  • Martinez-Haya B, Cuetos A. Stability of nematic and smectic phases in rod-like mesogens with orientation−dependent attractive interactions. J Phys Chem B. 2007;111:8150–8157.
  • Care CM, Cleaver DJ. Computer simulation of liquid crystals. Rep Prog Phys. 2005;68:2665–2700.
  • Thisayukta J, Nakayama Y, Watanabe J. Effect of chemical structure on the liquid crystallinity of banana-shaped molecules. Liq Cryst. 2000;27(9):1129–1137.
  • Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York (NY): Plenium Press; 2006.
  • Belyaev BA, Drokin NA, Shabanov VF, et al. Dielectric properties of liquid crystals of the cyano derivative compounds with different fragments in the molecular core. Phys Solid State. 2004;46(3):574–578.
  • Adams CJ, Clark SJ, Ackland GJ, et al. Conformation-dependent dipoles of liquid crystal molecules and fragments from first principles. Phys Rev E. 1997;55(5):5641–5649.
  • Aneela R, Praveen LP, Ojha DP. Role of configurational entropy on ordering and phase organization of nematic liquid crystals—a molecular model. J Mol Liq. 2012;166:70–75.
  • Sıdır İ, Gülseven Sıdır Y. Ground state and excited state dipole moments of 6,8-diphenylimidazo[1,2α]pyrazine determined from solvatochromic shifts of absorption and fluorescence spectra. Spectrochim Acta Part A. 2011;79(5):1220–1225.
  • Gülseven Sıdır Y, Sıdır İ, Demiray F. Dipole moment and solvatochromism of Benzoic acid liquid crystals: tuning the dipole moment and molecular orbital energies by Substituted Au under external electric field. J Mol Struct. 2017;1137:440–452.
  • Bilot L, Kawski A. Zur Theorie des Einflusses von Losungsmitteln auf die Elektronenspektren der Molekule. Z Naturforsch. 1962;17a:621–627.
  • Kawski A. Progress in photochemistry and photophysics. Vol. 5. Boca Raton (USA): CRC Press; 1992.
  • Lippert E. Dipol moment und elektronen struktur von angeregten molekülen. Z Naturforsch. 1955;10a:541–545.
  • Mataga N, Kaifu Y, Koizumi M. Solvent effects upon fluorescence spectra and the dipolemoments of excited. Mol Bull Chem Soc Jpn. 1956;29:465–470.
  • Bakhshiev NG. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Opt Spektrosk. 1964;16:821–832.
  • Kawski A. Zur Lösung smitte labhängigkeit der Wellenzahlvon Elektron en banden Lumines zierender Moleküle und über die Bestimmung der Elektrischen Dipol momente im Anregung szustand. Acta Phys Pol. 1966;29:507–518.
  • Chamma A, Viallet P. Determination du moment dipolaire d’une molecule dans un etat excite singulet. Acad CR Sci Paris Ser C. 1970;270:1901–1904.
  • Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94:2319–2358.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.
  • McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations 1. 2nd row atoms Z=11-18. J Chem Phys. 1980;72:5639–5648.
  • Raghavachari K, Binkley JS, Seeger R, et al. Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys. 1980;72:650–654.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision A.02. Wallingford (CT): Gaussian, Inc.; 2016.
  • Dennington R, Keith T, Millam J. Gauss view, version 5. Shawnee Mission: Semichem Inc; 2009.
  • Kamlet MJ, Abboud JL, Abraham MH, et al. A comprehensive collection of the solvatochromic parameters,pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. J Org Chem. 1983;48:2877–2887.
  • Kamlet MJ, Abboud JL, Taft RW. The .pi.* scale of solvent polarities. J Amer Chem Soc. 1997;99(18):6027–6038.
  • Catalán J. Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a New Scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B. 2009;113(17):5951–5960.
  • Kawski A. Der Wellenzahl von Elecktronenbanden Lumineszierenden Moleküle. Acta Phys Pol. 1966;29:507–518.
  • Kawski A. Progress in photochemistry and photophysics. Boca Raton (Boston): CRC Press; 1992. p. 1–47.
  • Kawski A. On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch. 2002;57a:255–262.
  • Kawski A. Der Einfluss Polarer Moleküle auf die Elektronenspektren von 4-Aminophthalimid. Acta Phys Pol. 1964;25:285–290.
  • Kawski A, Bojarski P, Kuklinski B. Estimation of ground- and excited-state dipole moments of Nile Red dye from solvatochromic effect on absorption and fluorescence spectra. Chem Phys Lett. 2008;463:410–412.
  • Kawski A, Rabek JF, editor. Progress in photochemistry and photophysics. Vol. 5. Ann Arbor (Boston): CRC Press. 1992. p. 1.
  • Mataga N, Kaifu Y, Koizumi M. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn. 1956;29:465–470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.