384
Views
5
CrossRef citations to date
0
Altmetric
Article

Tunable balanced liquid crystal phase shifter based on spoof surface plasmon polaritons with common-mode suppression

ORCID Icon, , , , &
Pages 1612-1623 | Received 13 Jan 2020, Accepted 31 Mar 2020, Published online: 20 Apr 2020

References

  • Lim KC, Margerum JD, Lackner AM. Liquid crystal millimeter wave electronic phase shifter. Appl Phys Lett. 1993;62:1065–1067.
  • Dolfi D, Labeyrie M, Joffre P, et al. Liquid-crystal microwave phase shifter. Electron Lett. 1994;29:420–425.
  • Garbovskiy Y, Zagorodnii V, Krivosik P, et al. Liquid crystal phase shifters at millimeter wave frequencies. J Appl Phys. 2012;111:054504.
  • Jost M, Fritzsch C, Karabey OH, et al. Liquid crystal based low-loss phase shifter for W-band frequencies. Electron Lett. 2013;49:1460–1462.
  • Franc A-L, Karabey OH, Rehder G, et al. Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology. IEEE Trans Microwave Theory Tech. 2013;61:3905–3915.
  • Ding C, Meng F-Y, Mu H-L, et al. Bifunctional co-design of liquid crystal phase shifter and band-stop filter. J Phys D: Appl Phys. 2019;52:415002.
  • Reese R, Polat E, Tesmer H, et al. Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band. IEEE Access. 2019;7:127032–127041.
  • Ding C, Meng F-Y, Mu H-L, et al. Design of filtering tunable liquid crystal phase shifter based on coplanar waveguide and split-ring resonators. Liq Cryst. 2019;1–7. DOI:10.1080/02678292.2019.1613691.
  • Jost M, Gautam JSK, Gomes LG, et al. Miniaturized liquid crystal slow wave phase shifter based on nanowire filled membranes. IEEE Microwave Wireless Compon Lett. 2018;28:681–683.
  • Polat E, Reese R, Jost M, et al. Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz. IEEE Microwave Wireless Compon Lett. 2018;PP:1–3.
  • Liu Y, Jiang D, Xia L, et al. A novel microwave tunable band-pass filter integrated power divider based on liquid crystal. Int J Antennas Propag. 2015;2015:1–6.
  • Liu Y, Jiang D, Cao W, et al. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik. 2016;127:10216–10222.
  • Che B-J, Meng F-Y, Lyu Y-L, et al. Reconfigurable dual-band metamaterial antenna based on liquid crystals. J Phys D: Appl Phys. 2018;51:185102.
  • Ma S, Yang G-H, Erni D, et al. Liquid crystal leaky-wave antennas with dispersion sensitivity enhancement. IEEE Trans Compon Packaging Manuf Technol. 2017;7:792–801.
  • Che B-J, Jin T, Erni D, et al. Electrically controllable composite right/left-handed leaky-wave antenna using liquid crystals in PCB technology. IEEE Trans Compon Packaging Manuf Technol. 2017;7:1331–1342.
  • Ma S, Zhang S-Q, Ma L-Q, et al. Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal. IET Microwaves Antennas Propag. 2018;12:1140–1146.
  • Shi H, Li J, Zhu S, et al. Radiation pattern reconfigurable waveguide slot array antenna using liquid crystal. Int J Antennas Propag. 2018;2018:1–9.
  • Zhao Y, Huang C, Qing A-Y, et al. A frequency and pattern reconfigurable antenna array based on liquid crystal technology. IEEE Photonics J. 2017;9:1–7.
  • Hu W, Dickie R, Cahill R, et al. Liquid crystal tunable mm wave frequency selective surface. IEEE Microwave Wireless Compon Lett. 2007;17:667–669.
  • Zhang W, Shi J. A balanced phase shifter with common-mode suppression. IEEE Trans Ind Electron. 2019;66:378–386.
  • Qiu L-L ZL. Balanced wideband phase shifters with good filtering property and common-mode suppression. IEEE Trans Microwave Theory Techn. 2019;67: 2313–2321.
  • Qiu -L-L, Zhu L, Lyu Y-P. Balanced wideband phase shifters with wide phase shift range and good common-mode suppression. IEEE Trans Microwave Theory Techn. 2019;67: 3403–3413.
  • Lin Y-W, Chou Y-C, Chang C-Y. A balanced digital phase shifter by a novel switching-mode topology. IEEE Trans Microwave Theory Tech. 2013;61:2361–2370.
  • Sazegar M, Zheng Y, Maune H, et al. Compact tunable phase shifters on screen-printed BST for balanced phased arrays. IEEE Trans Microw Theory Tech. 2011;59:3331–3337.
  • Wu S-T, Efron U, Hess LD. Birefringence measurements of liquid crystals. Appl Opt. 1984;23:3911.
  • Tian D, Wang J, Kianinejad A, et al. Compact high-efficiency resonator antenna based on dispersion engineering of even-mode spoof surface plasmon polaritons. IEEE Trans Antennas Propagat. 2020;68:2557–2564.
  • Han Y, Wang J, Li Y, et al. A frequency-scanning antenna based on hybridization of the quasi-TEM mode and spoof surface plasmon polaritons mode. J Phys D: Appl Phys. 2019;52:38LT01.
  • Guo YJ, Da Xu K, Tang X. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters. Opt Express. 2018;26:10589.
  • Tian D, Kianinejad A, Zhang A, et al. Graphene-based dynamically tunable attenuator on spoof surface plasmon polaritons waveguide. IEEE Microwave Wireless Compon Lett;2019. DOI: 10.1109/LMWC.2019.2913964
  • Han Y, Wang J, Gong S, et al. Low RCS antennas based on dispersion engineering of spoof surface plasmon polaritons. IEEE Trans Antennas Propag. 2018;66:7111–7116.
  • Wu S-T. Birefringence dispersions of liquid crystals. Phys Rev A. 1986;33:1270–1274.
  • Liu W-T, Tsai C-H, Han T-W, et al. An Embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane. IEEE Microw Wireless Compon Lett. 2008;18:248–250.
  • Xu H-X, Sun S, Tang S, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep. 2016;6:1–10.
  • Xu H-X, Tang S, Ma S, et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci Rep. 2016;6:38255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.