227
Views
8
CrossRef citations to date
0
Altmetric
Article

Phase Contraction, fluorescence quenching and formation of topological defects in chiral smectic C matrix by Cd0.15Zn0.85S/ZnS core/shell quantum dots dispersion: Faster electro-optic response for gadget displays

, , , , , , & show all
Pages 1638-1654 | Received 28 Nov 2019, Accepted 08 Apr 2020, Published online: 26 Apr 2020

References

  • Hegmann T, Qi H, Marx VM. Nanoparticles in Liquid Crystals: synthesis, Self- Assembly, Defect Formation and Potential Applications. J Inorg Organomet Polym Mater. 2007 Sep;17(3):483–508.
  • Kumar PS, Kumar S, Lakshminarayanan V. Electrical Conductivity Studies on Discotic Liquid Crystal-Ferrocenium Donor-Acceptor Systems. J Phys Chem A. 2008 Apr;112(16):4865–4869.
  • Kumar A, Biradar AM. Effect of cadmium telluride quantum dots on the dielectric and electro-optical properties of ferroelectric liquid crystals. Phys Rev E. 2011 Apr;83(4):041708. Available from.
  • Kumar A, Molinero V. Self-Assembly of Mesophases from Nanoparticles. J Phys Chem Lett. 2017 Oct 8;(20): 5053–5058. DOI:10.1021/acs.jpclett.7b02237.
  • Doke S, Sonawane K, Reddy VR, et al. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liq Cryst. 2018 Mar:1–7. DOI:10.1080/02678292.2018.1449260
  • Zhou P, Li Y, Liu S, et al. Colour 3D holographic display based on a quantum- dot-doped liquid crystal. Liq Cryst. 2019;46(10):1478–1484.
  • Rastogi A, Agrahari K, Pathak G, et al. Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots. Liq Cryst. 2019;46(5):725–735.
  • Roy A, Agrahari K, Srivastava A, et al. Plasmonic resonance instigated enhanced photoluminescence in quantum dot dispersed nematic liquid crystal. Liq Cryst. 2019;46(8):1224–1230.
  • Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liq Cryst. 2019;46(13–14):2057–2074.
  • Ma Y, Wang X, Srivastava AK, et al. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes. AIP Adv. 2016 Mar;6(3):035207.
  • Kumar A, Prakash J, Khan MT, et al. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010 Oct;97(16):163113.
  • Leyva DG, Robertson B, Henderson CJ, et al. Free-space optical interconnect using an FLC SLM for active beam steering and wave front correction. Proc. SPIE. 2004 Sep;5453(1):62–72
  • Singh DP, Vimal T, Mange YJ, et al. CuInS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects. J Appl Phys. 2018 Jan;123(3):034101.
  • Zorman B, Ramakrishna MV, Friesner RA. Quantum Confinement Effects in CdSe Quantum Dots. J Phys Chem. 1995 May;99(19):7649–7653.
  • Grandhi GK, Viswanatha R,, . Understanding the Role of Surface Capping Lig- ands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor. J Phys Chem C. 2016 Sep;120(35):19785–19795.
  • Bae WK, Nam MK, Char K, et al. Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1-xZnxS/ZnS Nanocrystals. Chem Mater. 2008 Aug;20(16):5307–5313.
  • Baek SW, Shim JH, Park JG. The energy-down-shift effect of Cd0.5Zn0.5S–ZnS core–shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells. Phys Chem Chem Phys. 2014 Aug;16(34):18205–18210. Available from: http://pubs.rsc.org/en/content/articlelanding/2014/cp/c4cp00794h
  • Shen H, Bai X, Wang A, et al. High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality Zn $\textrm x $ Cd $\textrm 1- x $ S/ZnS Core/Shell Quantum Dots. Adv Funct Mater. 2014 Apr;24(16):2367–2373.
  • Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single- photon sources. Nat Nanotechnol. 2017 Nov;12(11):1026–1039. Available from: https://www.nature.com/articles/nnano.2017.218
  • Xu Y, Wang X, Zhang WL, et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev. 2018 Jan;47(2):586–625. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/cs/c7cs00500h
  • Kumar A, Prakash J, Deshmukh AD, et al. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl Phys Lett. 2012 Mar;100(13):134101.
  • Singh DP, Gupta SK, Manohar R, et al. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal. J Appl Phys. 2014 Jul;116(3):034106.
  • Singh DP, Daoudi A, Gupta SK, et al. Mn2+ doped ZnS quantum dots in ferroelectric liquid crystal matrix: analysis of new relaxation phenomenon, faster optical response, and concentration dependent quenching in photolumi- nescence. J Appl Phys. 2016 Mar;119(9):094101.
  • Shurpo NA, Vakshtein MS, Kamanina NV. Effect of CdSe/ZnS semiconductor quantum dots on the dynamic properties of nematic liquid-crystalline medium. Tech Phy Lett. 2010 Apr;36(4):319–321.
  • Joshi T, Ganguly P, Haranath D, et al. Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots. Mater Lett. 2014 Jan;114:156–158. Available from: http://www.sciencedirect.com/science/article/pii/S0167577X13013542
  • Singh DP, Misra AK, Achalkumar AS, et al. Transmuting the blue fluorescence of hekates mesogens derived from tris(N-salicylideneaniline)s core via ZnS/ZnS:Mn2+ semiconductor quantum dots dispersion. J Lumin. 2019 Jun;210:7–13. Available from: http://www.sciencedirect.com/science/article/pii/S0022231318319136
  • Singh DP, Pandey S, Gupta S, et al. Quenching of photoluminescence and enhanced contrast of ferroelectric liquid crystal dispersed with Cd 1-X Zn X S/ZnS core/shell nanocrystals. J Lumin. 2016 May;173:250–256. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022231315301393
  • Kondratenko K, Boussoualem Y, Singh DP, et al. Molecular p-doping in organic liquid crystalline semiconductors: influence of the charge transfer complex on the properties of mesophase and bulk charge transport. Phys Chem Chem Phys. 2019 Aug;21(34):18686–18698. Available from: https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03076j
  • Singh DP, Kumar V, Kumar A, et al. Effect of graphene oxide interlayer electron-phonon coupling on the electro-optical parameters of a ferroelectric liquid crystal. RSC Adv. 2017;7(21):12479–12485. Available from: http://xlink.rsc.org/?DOI=C6RA25126A
  • Singh DP, Duponchel B, Boussoualem Y, et al. Dual Photoluminescence and Charge Transport in alkoxy biphenyl benzoate ferroelectric liquid crystalline-Graphene Oxide Composite. New J Chem. 2018 Aug;42:16682–16693. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/nj/c8nj02985g
  • Singh DP, Gupta SK, Vimal T, et al. Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate. Phys Rev E. 2014 Aug;90(2):022501.
  • Srivastava AK, Misra AK, Chand PB, et al. Shifting of transition temperature of ferroelectric liquid crystals due to addition of dye-An optical and dielectric study. J Phys Chem Solids. 2007 Apr;68(4):523–529. Available from: http://www.sciencedirect.com/science/article/pii/S0022369707000169
  • Padmini HP, Madhusudana NV, Shivkumar B. Electroclinic measurement of the coefficients of Landau expansion of some ferroelectric liquid crystals. Bull Mater Sci. 1994 Nov;17(6):1119–1129.
  • Malik A, Choudhary A, Silotia P, et al. Effect of ZnO nanoparticles on the SmC*-SmA* phase transition temperature in electroclinic liquid crystals. J Appl Phys. 2011 Sep;110(6):064111.
  • Singh DP, Visvanathan R, Duncan AE, et al. CdSe quantum dots in chiral smectic C matrix: experimental evidence of smectic layer distortion by small and wide angle X-ray scattering and subsequent effect on electro-optical parameters. Liq Cryst. 2019 Feb;46(3):376–385.
  • Singh S, Parmar AS, Singh A. Phase transitions in ferroelectric liquid crystals. Phase Transitions. 2008 Sep;81(9):815–855.
  • Pandey MB, Dhar R, Wadhawan VK. Phase Transitions and recent advances in liquid-crystals research. Phase Transitions. 2009 Dec;82(12):831–849.
  • Lin Y, Douali R, Dubois F, et al. On the phase transitions of 8CB/Sn2P2S6 liquid crystal nanocolloids. Eur Phys J E. 2015 Sep;38(9):103.
  • Khushboo Sharma P, Malik P, et al. Electro-optic, dielectric and optical studies of NiFe2O4-ferroelectric liquid crystal: a soft magnetoelectric material. Liq Cryst. 2016 Sep;43(11):1671–1681.
  • Al-Zangana S, Turner M, Dierking I. A comparison between size dependent para- electric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J Appl Phys. 2017 Feb;121(8):085105.
  • Lopatina LM, Selinger JV. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev E. 2011 Oct;84(4):041703.
  • Lopatina LM, Selinger JV. Theory of Ferroelectric Nanoparticles in Nematic Liquid Crystals. Phys Rev Lett. 2009 May;102(19):197802.
  • Cordoyiannis G, Kurihara LK, Martinez-Miranda LJ, et al. Effects of magnetic nanoparticles with different surface coating on the phase transitions of octylcyanobiphenyl liquid crystal. Phys Rev E. 2009 Jan;79(1):011702.
  • Lahiri T, Pal Majumder T, Ghosh NK. Theory of nanoparticles doped in ferroelectric liquid crystals. J Appl Phys. 2013 Feb;113(6):064308.
  • Shoarinejad S, Mohammadi Siahboomi R, Ghazavi M. Theoretical studies of the influence of nanoparticle dopants on the ferroelectric properties of a ferroelectric liquid crystal. J Mol Liq. 2018 Mar;254:312–321. Available from: http://www.sciencedirect.com/science/article/pii/S0167732217337297
  • Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd. New York (NY): Springer; 2006. Available from:: https://www.springer.com/gp/book/9780387312781
  • Paul A, Samanta A. Photoinduced Electron Transfer Reaction in Room Temperature Ionic Liquids: A Combined Laser Flash Photolysis and Fluorescence Study.. J Phys Chem A. 2007 Mar;111(8):1957–1962.
  • Dogic Z, Frenkel D, Fraden S. Enhanced stability of layered phases in parallel hard spherocylinders due to addition of hard spheres. Phys Rev E. 2000 Sep;62(3):3925–3933.
  • Singh DP, Boussoualem Y, Duponchel B, et al. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal. J Phys D Appl Phys. 2017;50(32):325301. Available from: http://stacks.iop.org/0022-3727/50/i=32/a=325301
  • Singh DP, Boussoualem Y, Duponchel B, et al. Corrigendum: pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal. (2017 J. Phys. D: Appl. Phys. 50 [https://doi.org/10.1088/1361-6463/aa7ae5] 325301). J Phys D Appl Phys. 2018;51(46):469501. Available from. ;():. : http://stacks.iop.org/0022-3727/51/i=46/a=469501
  • Lagerwall ST. Ferroelectric and Antiferroelectric Liquid Crystals. Weinheim (Germany): John Wiley & Sons; 2008.
  • Goodby JW, Leslie TM. Ferroelectric Liquid Crystals - Structure and Design. Mol Cryst Liq Cryst. 1984 Aug;110(1–4):175–203.
  • Skarp K, Handschy MA. Ferroelectric Liquid Crystals. Material Properties and Applications. Mol Cryst Liq Cryst Incorporating Nonlinear Opt. 1988 Dec;165(1):439–509.
  • Helfrich W. Inherent Bounds to the Elasticity and Flexoelectricity of Liquid Crystals. Mol Cryst Liq Cryst. 1974 Jan;26(1–2):1–5.
  • Agnes B, Nandor E. Flexoelectricity In Liquid Crystals: theory, Experiments And Applications. Singapore: World Scientific; 2012.
  • Popova EV, Kopeychenko EI, Krivoshey AI, et al. Piezoelectric and flexoelectric effects in ferroelectric liquid crystals. Phy Rev E. 2012 Sep;86(3):031705.
  • Kim MS, Bos PJ, Kim DW, et al. Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices. Sci Rep. 2016 Oct;6:35254. Available from: https://www.nature.com/articles/srep35254
  • Usov I, Mezzenga R. FiberApp: an Open-Source Software for Tracking and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects. Macromolecules. 2015;48(5):1269–1280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.