550
Views
9
CrossRef citations to date
0
Altmetric
Article

Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption

, , , ORCID Icon, , , , & show all
Pages 1655-1662 | Received 12 Dec 2019, Accepted 08 Apr 2020, Published online: 29 Apr 2020

References

  • Chilaya G. Chirality in liquid crystals. Kitzerow HS, Bahr C, Eds. New York: Springer. 2001. Ch. 6.
  • Tamaoki N. Cholesteric liquid crystals for color information technology. Adv Mater. 2001;13(15):1135–1147.
  • Hu W, Zhao H, Song L, et al. Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites. Adv Mater. 2010;22(4):468–472
  • Akiyama H, Tanaka A, Hiramatsu H, et al. Reflection colour changes in cholesteric liquid crystals after the addition and photochemical isomerization of mesogenic azobenzenes tethered to sugar alcohols. J Mater Chem. 2009;19(33):5956–5963
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276.
  • John WDS, Fritz WJ, Lu ZJ, et al. Bragg reflection from cholesteric liquid crystals. Phys Rev E. 1995;51(2):1191
  • Ditlbacher H, Krenn JR, Lamprecht B, et al. Spectrally coded optical data storage by metal nanoparticles. Opt Lett. 2000;25(8):563–565
  • De Filpo G, Nicoletta FP, Chidichimo G. Cholesteric emulsions for colored displays. Adv Mater. 2005;17(9):1150–1152.
  • Hikmet RAM, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature. 1998;392(6675):476.
  • Yang H, Mishima K, Matsuyama K, et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl Phys Lett. 2003;82(15):2407–2409
  • De Witte PV. LCD components obtained by patterning of chiral nematic polymer layers. J Mater Chem. 1999;9(9):2087–2094.
  • Chen SH, Mastrangelo JC, Jin RJ. Glassy liquid crystal films as broadband polarizers and reflectors via spatially modulated photoracemization. Adv Mater. 1999;11(14):1183–1186.
  • Granqvist CG. Solar energy materials. Adv Mater. 2003;15(21):1789–1803.
  • Sousa ME, Broer DJ, Bastiaansen CWM, et al. Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies. Adv Mater. 2006;18(14):1842–1845
  • Brehmer M, Lub J, Van De Witte P. Light‐induced color change of cholesteric copolymers. Adv Mater. 1998;10(17):1438–1441.
  • Bian Z, Li K, Huang W, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl Phys Lett. 2007;91(20):201908
  • Hrozhyk UA, Serak SV, Tabiryan NV, et al. Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials. Adv Mater. 2007;19(20):3244–3247
  • White TJ, Freer AS, Tabiryan NV, et al. Photoinduced broadening of cholesteric liquid crystal reflectors. J Appl Phys. 2010;107(7):073110
  • Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed. 2011;50(7):1492–1522.
  • Nucara L, Greco F, Mattoli V. Electrically responsive photonic crystals: a review. J Mater Chem C. 2015;3(33):8449–8467.
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1(10):1033–1041
  • McConney ME, Tondiglia VP, Natarajan LV, et al. Electrically induced color changes in polymer‐stabilized cholesteric liquid crystals. Adv Opt Mater. 2013;1(6):417–421
  • Lin TH, Jau HC, Chen CH, et al. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy. Appl Phys Lett. 2006;88(6):061122
  • Tondiglia VT, Natarajan LV, Bailey CA, et al. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J Appl Phys. 2011;110(5):053109
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt Mater Express. 2014;4(7):1465–1472
  • Bailey CA, Tondiglia VP, Natarajan LV, et al. Electromechanical tuning of cholesteric liquid crystals. J Appl Phys. 2010;107(1):013105
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015;11(6):1208–1213
  • Lee KM, Tondiglia VP, White TJ. Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals. Soft Matter. 2016;12(4):1256–1261.
  • Khandelwal H, Debije MG, White TJ, et al. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J Mater Chem A. 2016;4(16):6064–6069
  • Lu H, Hu J, Chu Y, et al. Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. J Mater Chem C. 2015;3(21):5406–5411.
  • Lu L, Sergan V, Bos PJ. Mechanism of electric-field-induced segregation of additives in a liquid-crystal host. Phys Rev E. 2012;86(5):051706.
  • Lee W, Wang CT, Lin CH. Recovery of the electrically resistive properties of a degraded liquid crystal. Displays. 2010;31(3):160–163.
  • Gosse B, Gosse JP. Degradation of liquid crystal devices under dc excitation and their electrochemistry. J Appl Electrochem. 1976;6(6):515–519.
  • Wen CH, Gauza S, Wu ST. Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups. Liq Cryst. 2004;31(11):1479–1485.
  • Naemura S, Nakazono Y, Nishikawa K, et al. Structure of ions in liquid-crystalline materials. Mater Res Soc Symp Proc. 1998;508:235.
  • Neyts K, Vermael S, Desimpel C, et al. Lateral ion transport in nematic liquid-crystal devices. J Appl Phys. 2003;94(6):3891–3896
  • Sawada A. Internal electric fields of electrolytic solutions induced by space-charge polarization. J Appl Phys. 2006;100(7):074103.
  • Son J-H, Park SB, Zin W-C, et al. Ionic impurity control by a photopolymerisation process of reactive mesogen. Liq Cryst. 2013;40(4):458–467
  • Nakazono Y, Takagi T, Sawada A, et al. A novel model of residual DC in LC cells. IDW. 1998;98:61.
  • Mada H, Yamada H. Measurement of steady-state current flowing in nematic liquid crystal. Japan J Appl Phys. 1994;33(10R):5886.
  • Mizusaki M, Miyashita T, Uchida T, et al. P‐227L: late‐news poster: the mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials. SID Int Symp Dig Tech Pap. 2006;37(1):673–676
  • Korniychuk PP, Gabovich AM, Singer K, et al. Transient and steady electric currents through a liquid crystal cell. Liq Cryst. 2010;37(9):1171–1181
  • Berberan-Santos MN, Bodunov EN, Valeur B. Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential).. Chem Phys. 2005;315(1–2):171–182.
  • Cardona M, Chamberlin RV, Marx W. Comment on the history of the stretched exponential function. Ann der Phys. 2007;16: 842.
  • Koval’chuk AV. Relaxation processes and charge transport across liquid crystal-electrode interface. J Phys: Condens Matter. 2001;13(46):10333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.