330
Views
14
CrossRef citations to date
0
Altmetric
Article

Textural and electro-optical study of a room temperature nematic liquid crystal 4̍-pentyl-4-biphenylcarbonitrile doped with metal oxide nanowires in planar and in-plane switching cell configurations

, &
Pages 1663-1677 | Received 22 Jan 2020, Accepted 09 Apr 2020, Published online: 14 May 2020

References

  • Canli NY, Ozdemir ZG, Okutan M, et al. Dielectric properties of 4-cyno-4̍-pentylbiphenyl (5CB): 4-[4-(S)-2 Methylbutoxybe- nzoyloxy] benzoic acid (BAC) composite. Mol Cryst Liq Cryst. 2015;623:17–30.
  • Jayoti D, Malik P, Prasad SK. Effect of ZnO nanoparticles on the morphology, dielectric, electro-optic and photo luminescence properties of a confined ferroelectric liquid crystal material. J Mol Liq. 2018;250:381–387.
  • Porov P, Chandel VS, Manohar R. Dielectric and electro-optical properties of ceramic nanoparticles doped liquid crystals. Trans Electr Electron Mater. 2016;17:69–78.
  • Oh-E M, Kondo K. Electro‐optical characteristics and switching behaviour of the in‐plane switching mode. Appl Phys Lett. 1995;67:3895.
  • Lee SH, Lee SL, Kim HY. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl Phys Lett. 1998;73:2881.
  • Lee SH, Kim HY, Park IC, et al. Rubbing-free vertically aligned nematic liquid crystal display controlled by in-plane field. Appl Phys Lett. 1997;71:2851.
  • Eskalen H, Ozgan S, Alver U, et al. Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys Pol A. 2015;127:756–760.
  • Manohar R, Yadav SP, Srivastava AK, et al. Zinc oxide (1% cu) nanoparticle in nematic liquid crystal: dielectric and electro-optical study. Jpn J Appl Phys. 2009;48:101501.
  • Roy A, Pathak G, Herman J, et al. InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters. Appl Phys A. 2018;124:273.
  • Oka S, Kimura M, Akahane T. Electro-optical characteristics and switching behaviour of a twisted nematic liquid crystal device based upon in-plane switching. Appl Phys Lett. 2002;80:1847–1849.
  • Gwag JS, Sohn K, Kim YK, et al. Electro-optical characteristics of a chiral hybrid in-plane switching liquid crystal mode for high brightness. Opt Express. 2008;16:12220–12226.
  • Reshetnyak V, Shevchuk O. Operating voltage in the in plane-switching of nematic liquid crystals. J Mol Liq. 2001;92:131–137.
  • Hsieh CT, Huang CY. Fast switching of the in-plane switching dual-frequency liquid crystal cell. The 22nd liquid crystal conference; 2008 Jun-Jul 29-4; Jeju, Korea.
  • Park JB, Park SH, Park EJ et al. Influence of cell design with homogeneous LC alignment on L0 gray. The 14th International Display Workshop ’06; Otsu, Japan: Society for Information Display; 2006. p. 177–180.
  • Badano A. Viewing angle comparison of IPS and VA medical AMLCDs. Digest of Technical Papers of 2005 Society for Information Display International Symposium; Boston, Massachusetts: Society for information Display; 2005. p. 192–195.
  • Mishra M, Dabrowski RS, Dhar R. Thermodynamical, optical, electrical and electro-optical studies of a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl dispersed with barium titanate nanoparticles. J Mol Liq. 2016;213:247–254.
  • Mishra M, Kumar A, Biradar AM, et al. Enhancement of electro-optical response of ferroelectric liquid crystal: the role of grapheme quantum dots. Liq Cryst. 2014;41:1719–1725.
  • Liang HH, Xiao YZ, Hsh FJ, et al. Enhancing the electro optical properties of ferroelectric liquid crystals by doping ferroelectric nanoparticles. Liq Cryst. 2010;37:255–261.
  • Tripathi PK, Misra AK, Pandey KK, et al. Study on dielectric and optical properties of ZnO doped nematic liquid crystal in low frequency region. Chem Rapid Commun. 2013;1:20–26.
  • Chen WT, Chen PS, Chao CY. Effect of doped insulating nanoparticles on the electro-optical characteristics of nematic liquid crystals. Jpn J Appl Phys. 2009;48:015006.
  • Reznikov Y, Buchnev O, Tereshchenko O, et al. Ferroelectric nematic suspension. Appl Phys Lett. 2003;82:1917.
  • Li F, Buchnev O, Cheon CI, et al. Orientational coupling amplification in ferroelectric nematic colloids. Phys Rev Lett. 2006;97:147801.
  • Lee W, Wang CY, Shih YC. Effects of carbon nano solids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl Phys Lett. 2004;85:513.
  • Lee CW, Shih WP. Quantification of ion trapping effect of carbon nanomaterials in liquid crystals. Mater Lett. 2010;64:466.
  • Maleki A, Ara MHM, Saboohi F. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles. Phase Transit. 2016;90:371.
  • Nayek P, Karan S, Kundu S, et al. Effect of cadmium sulphide nanorod content on Freedericksz threshold voltage, splay and bend elastic constants in liquid-crystal nanocomposites. J Phys D: Appl Phys. 2012;45:235303.
  • De PG. Gennes, The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1974.
  • Wu PC, Yang SY, Lee W. Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles. J Mol Liq. 2016;218:150–155.
  • Tomylko S, Yaroshchuk O, Kovalchuk O, et al. Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukr J Phys. 2012;5:239–243.
  • Singh UB, Dhar R, Dabrowski R, et al. Enhanced electro-optical properties of a nematic liquid crystals in presence of BaTiO3 nanoparticles. Liq Cryst. 2014;41:953–959.
  • Jiang H, Toshima N. Low driving voltage of a liquid crystal device fabricated from 4ʹ -pentyl- 4-biphenylcarbonitrile doped with environmentally friendly ZnO nanoparticles. Chem Lett. 2009;38:566–567.
  • Singh UB, Dhar R, Dabrowski R. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq Cryst. 2013;40:774–782.
  • Lee SB, Nakayama K, Matsui T, et al. Dynamic behaviour of silica nanoparticles in liquid crystals under an ac applied voltage. Proceedings of Thirteenth International Conference on Dielectric Liquids. Japan; 1999. p. 571–574. DOI:10.1109/ICDL.1999.798999
  • Malik A, Choudhary A, Silotia P, et al. Effect of ZnO nanoparticles on the SmC*-SmA* phase transition temperature in electro clinic liquid crystals. J Appl Phys. 2011;110:064111.
  • Sharma A, Malik P, Dhar R, et al. Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture. Bull Mater Sci. 2019;42:215.
  • Sharma A, Kumar P, Malik P. Effect of zinc oxide nanoparticles on dielectric behaviour of nematic liquid crystal. AIP Conf Proc. 2018;1953:100037.
  • Kurochkin O, Mavrona E, Apostolopoulos V, et al. Electrically charged disper-sions of ferroelectric nanoparticles. Appl Phys Lett. 2015;106:043111.
  • Cook G, Reshetnyak VY, Ziolo RF, et al. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Opt Express. 2010;18:17339.
  • Haraguchi F, Inoue KI, Toshima N, et al. Reduction of the threshold voltages of nematic liquid crystal electro-optical devices by doping inorganic nanoparticles. Jpn J Appl Phys. 2007;46:L796.
  • Scolari L, Gauza S, Xianyu H, et al. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals. Opt Express. 2009;5:3754.
  • Koysal O, Gokcen M, Yildirim M. The Fe3O4 nanoparticle doping effect in liquid crystal on electrical and dielectric properties. Can J Phys. 2013;91:420.
  • Tao Y, Tam YH. Dynamics of ZnO nanowires immersed in in-plane switching liquid crystal cells. Appl Phys Lett. 2013;103:203102.
  • Pal K, Maria HJ, Thomas S, et al. Smart in-plane switching of nanowires embedded liquid crystal matrix. Org Electron. 2017;42:256–268.
  • Jeon SY, Shin SH, Jeong SJ, et al. Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field. Appl Phys Lett. 2007;90:121901.
  • Basu R, Shalov SA. Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices. Phys Rev E. 2017;96:012702.
  • Gangwar J, Chandran A, Joshi T, et al. Probing on phase dependent luminescent properties of Al2O3 nanowires for their performance in ferroelectric liquid crystal. Mater Res Express. 2015;2:075013.
  • Czub J, Urban S, Wurflinger A. High pressure studies of the static permittivity tensor components in the nematic phase of 6CB. Liq Cryst. 2006;33:85–89.
  • Verma R, Mishra M, Dhar R, et al. Single walled carbon nanotubes persuaded optimization of the display parameters of a room temperature liquid crystal 4-pentyl-4′cyanobiphenyl. J Mol Liq. 2016;221:190–196.
  • Kumar P, Debnath S, Rao NVS, et al. Nanodoping: a route for enhancing electro-optic performance of bent core nematic system. Phys Condens Matter. 2018;30:09510.
  • Khushboo, Sharma P, Malik P, et al. Textural, thermal, optical and electrical properties of Iron nanoparticles dispersed 4′-(Hexyloxy)-4-biphenylcarbonitrile liquid crystal mixture. Liq Cryst. 2017;44:1717.
  • Oh-E M, Kondo K. The in-plane switching of homogeneously aligned nematic liquid crystals. Liq Cryst. 1997;22:379–390.
  • Chen TJ, Lin GJ, Chen BY, et al. Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field. Displays. 2015;37:94–99.
  • Prasad A, Das MK. Optical birefringence studies of a binary mixture with the nematic–smectic Ad-re-entrant nematic phase sequence. J Phys Condens Mater. 2010;22:195106.
  • West JL, Zhang G, Glushchenko A. Fast birefringent mode stressed liquid crystal. Appl Phys Letts. 2005;86:031111.
  • Oh-e M. In-plane switching electro-optical effect of nematic liquid crystals. Liq Cryst Today. 2001;10:6–10.
  • Choi TH, Kim JW, Yoon TH. Fast in-plane switching of negative liquid crystals using crossed patterned electrodes. Jpn J Appl Phys. 2014;53:081701.
  • Sharma A, Malik P, Kumar P. Electro-optical and dielectric responses of ZnO nanoparticles doped nematic liquid crystal in In-plane switching (IPS) mode. Integr Ferroelectr. 2019;202:52–66.
  • Podgornov FV, Gavrilyak M, Karaawi A, et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion. Liq Cryst. 2018;45:1594–1602.
  • Kim DS, Lee SE, Nam SJ, et al. A power-efficient driving method for In-plane switching-mode TFT-LCD using a negative liquid crystal. J Disp Technol. 2014;10:1093–1100.
  • Choi TH, Choi Y, Woo JH, et al. Electro-optical characteristics of an in-plane switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure. Opt Express. 2016;24:15987–15996.
  • Ivankov A. Advantages and disadvantages of IPS screen technology. Version Daily. Archived from the original on 26 September 2017. 2016 Sept 1. cited 2017 Sept 25.
  • Ge Z, Zhu X, Wu TX. High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal. J Soc Inf Display. 2006;14:1031–1037.
  • Pande M, Tripathi PK, Gupta SK, et al. Enhancement of birefringence of liquid crystals with dispersion of poly (n-butyl methacrylate) (PBMA). Liq Cryst. 2015;42:1465–1471.
  • Pan RP, Tsai TR, Chen CY, et al. Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range. J Biol Phys. 2003;29:335–338.
  • Mavrona E, Chodorow U, Barnes ME, et al. Refractive indices and birefringence of hybrid liquid crystals – nanoparticles composite materials in the terahertz region. AIP Adv. 2015;5:077143.
  • Montgomery GP Jr., Vaz NA. Contrast ratios of polymer-dispersed liquid crystal films. Appl Opt. 1987;26:738.
  • Raina KK, Kumar P, Malik P. Morphological control and polarization switching in polymer dispersed liquid crystal materials and devices. Bull Mater Sci. 2006;29:599.
  • Yaduvanshi P, Mishra A, Kumar S, et al. Effect of silver nanoparticles on frequency and temperature-dependent electrical parameters of a discotic liquid crystalline material. Liq Cryst. 2015;42:1478–1489.
  • Khushboo, Sharma P, Malik P. Electro-optic, dielectric and optical studies of NiFe2O4- ferroelectric liquid crystal: a soft magneto electric material. Liq Cryst. 2016;43:1671–1681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.