500
Views
11
CrossRef citations to date
0
Altmetric
Article

Functionalised liquid crystal microfibers for hydrogen peroxide and catalase detection using whispering gallery mode

, , , &
Pages 1708-1717 | Received 26 Feb 2020, Accepted 18 Apr 2020, Published online: 28 May 2020

References

  • Ballinger SW, Houten BV, Conklin CA, et al. Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res. 1999;68(6):765–772.
  • Sohal RS, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med. 1994;16:621–626.
  • Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373–399.
  • Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8(3–4):243–270.
  • Brestovisky A, KirowaEisner E. Direct and titrimetric determination of hydrogen peroxide by reverse pulse polarography. Anal Chem. 1983;55(13):2063–2066.
  • Lee D, Khaja S, Velasquez-Castano JC, et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater. 2007;6(10):765–769.
  • Guo JZ, Cui H, Zhou W, et al. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem. 2008;193(2–3):89–96.
  • Chen W, Cai S, Ren QQ, et al. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137:49–58.
  • Huang KJ, Niu DJ, Liu X, et al. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochim Acta. 2011;56(7):2947–2953.
  • Matsumoto T, Saito S, Ikeda S. A multilayer membrane amperometric glucose sensor fabricated using planar techniques for large-scale production. J Biotechnol. 2006;122(2):267–273.
  • Ansari AA, Solanki PR, Malhotra BD. Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J Biotechnol. 2009;142(2):179–184.
  • Sies H. Biochemistry of the peroxisome in the liver cell. Angew Chem Int Ed. 1974;13(11):706–718.
  • Nicholls P. Classical catalase: ancient and modern. Arch Biochem Biophys. 2012;525(2):95–101.
  • Salvi M, Battaglia V, Brunati AM, et al. Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem. 2007;282(33):24407–24415.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1(1):29–51.
  • Miller DS, Wang X, Abbott NL. Design of functional materials based on liquid crystalline droplets. Chem Mater. 2014;26(1):496–506.
  • Lin IH, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332(6035):1297–1300.
  • Wang Y, Zhao LY, Xu A, et al. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens Actuators B. 2018;258:1090–1098.
  • Price AD, Schwartz DK. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc. 2008;130(26):8188–8194.
  • Hsu WL, Lee MJ, Lee W. Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules. Biomed Opt Express. 2019;10(10):4987–4998.
  • Verma I, Sidiq S, Pal SK. Protein triggered ordering transitions in poly (L-lysine)-coated liquid crystal emulsion droplets. Liq Cryst. 2019;46(9):1318–1326.
  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand– receptor binding using liquid crystals. Science. 1998;279(5359):2077–2080.
  • Kim SR, Shah RR, Abbott NL. Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals. Anal Chem. 2000;72(19):4646–4653.
  • Zhong S, Jang CH. Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals. Biosens Bioelectron. 2014;59:293–299.
  • Chen CH, Yang KL. A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products. Sens Actuators B. 2013;181:368–374.
  • Hu QZ, Jang CH. Real-time and sensitive detection of lipase using liquid crystal droplet patterns supported on solid surfaces. Liq Crys. 2013;41(4):597–602.
  • Hu QZ, Jang CH. A simple strategy to monitor lipase activity using liquid crystal-based sensors. Talanta. 2012;99:36–39.
  • Bungabong ML, Ong PB, Yang KL, et al. Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor. Sens Actuators B. 2010;148(2):420–426.
  • Humar M, Muševič I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt Express. 2011;19(21):19836–19844.
  • Vahala KJ. Optical microcavities. Nature. 2003;424(6950):839–846.
  • Humar M, Ravnik M, Pajk S, et al. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;3(10):595–600.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18(26):26995–27003.
  • Humar M. Liquid-crystal-droplet optical microcavities. Liq Cryst. 2016;43(13–15):1937–1950.
  • Jonáš A, Pilát Z, Ježek J, et al. Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. J Opt Soc Am B. 2017;34(9):1855–1864.
  • Sofi JA, Dhara S. Stability of liquid crystal micro-droplets based optical microresonators. Liq Cryst. 2019;46(4):629–639.
  • Mur M, Sofi JA, Kvasić I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets. Opt Express. 2017;25(2):1073–1083.
  • Cai L, Pan J, Hu S. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Opt Lasers Eng. 2020;127:105968.
  • Armani AM, Kulkarni RP, Fraser SE, et al. Label-free, single-molecule detection with optical microcavities. Science. 2007;317(5839):783–787.
  • Washburn AL, Luchansky MS, Bowman AL, et al. Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal Chem. 2009;82(1):69–72.
  • Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. PNAS. 2008;105(52):20701–20704.
  • Lee W, Chen Q, Fan X, et al. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption. Lab Chip. 2016;16(24):4770–4776.
  • Zhao YS, Peng A, Fu H, et al. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv Mater. 2008;20(9):1661–1665.
  • O’Carroll D, Lieberwirth I, Redmond G. Melt-processed polyfluorene nanowires as active waveguides. Small. 2007;3(7):1178–1183.
  • O’Carroll D, Lieberwirth I, Redmond G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat Nanotechnol. 2007;2(3):180–184.
  • Gu F, Yu H, Wang P, et al. Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano. 2010;4(9):5332–5338.
  • Chen R, Ta VD, Sun HD. Bending-induced bidirectional tuning of whispering gallery mode lasing from flexible polymer fibers. ACS Photonics. 2014;1(1):11–16.
  • Righini GC, Dumeige Y, Feron P. Whispering gallery mode microresonators: fundamentals and applications. Rivista del Nuovo Cimento. 2011;34(7):435–488.
  • Li HY, Sun X, Shahzad MK, et al. Facile preparation of upconversion microfibers for efficient luminescence and distributed temperature measurement. J Mater Chem C. 2019;7:7984–7992.
  • Shahzad MK, Zhang Y, Raza A, et al. Polymer microfibers incorporated with silver nanoparticles: a new platform for optical sensing. Nanoscale Res Lett. 2019;14(1):270.
  • Ta VD, Chen R, Ma L, et al. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photon Rev. 2013;7(1):133–139.
  • Duan R, Li YZ, Li HY, et al. Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomed Opt Express. 2019;10(12):6073–6083.
  • Sato K, Hyodo M, Takagi J, et al. Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure. Tetrahedron Lett. 2000;41(9):1439–1442.
  • Ramo J. Hydrogen peroxide-metals-chelating agents: interactions and analytical techniques. Oulu: Oulu University Press; 2003.
  • Bi X, Hartono D, Yang KL. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv Funct Mater. 2009;19(23):3760–3765.
  • Pantoja MAB, Yan Y, Abbott NL. Toluene-induced phase transitions in blue phase liquid crystals. Liq Cryst. 2019;46(13–14):1925–1936.
  • Shibaev P, Carrozzi D, Vigilia L, et al. Surface reconstruction of chiral glassy oligomers under the action of volatile organic compounds (VOCs). Liq Cryst. 2019;46(13–14):102–107.
  • Duan R, Li YZ, Shi BJ, et al. Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta. 2020;209:120513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.