280
Views
9
CrossRef citations to date
0
Altmetric
Article

Boost in the thermal stability, ionic conductivity and director relaxation frequency in the composite of liquid crystal and functionalised multi-walled carbon nanotubes

, ORCID Icon, , ORCID Icon &
Pages 345-360 | Received 19 May 2020, Accepted 13 Jun 2020, Published online: 02 Sep 2020

References

  • Scheffer T, Nehring J. Liquid crystals: applications and uses. Singapore: World Scientific; 1990. (edited by B. Bahadur).
  • Chigrinov VG. Liquid crystal devices: physics and applications. Boston: Artech House; 1999.
  • Chen RH. Liquid crystal displays: fundamental physics and technology. Hoboken, NJ: John Wiley & Sons, Inc,; 2011.
  • Qi H, Hegmann T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem. 2008;18:3288.
  • Sohn JI, Hong WK, Choi SS, et al. Emerging applications of liquid crystals based on nanotechnology. Materials (Basel). 2014;7(3):2044.
  • Mishra M, Dabrowski RS, Vij JK, et al. Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liq Cryst. 2015;42(11):1580.
  • Pandey DK, Singh UB, Dhar R, et al. Dielectric and electro-optic properties of 6CHBT nematic liquid crystals and silver nanoparticles composites. Phase Transitions. 2019;92(10):931.
  • Jain AK, Deshmukh RR. Electro-optical and dielectric study of multi-walled carbon nanotube doped polymer dispersed liquid crystal films. Liq Cryst. 2019;46(8):1191.
  • Yadav G, Agrahari K, Manohar R. Multiwall carbon nanotube-nematic liquid crystal composite system: preparation and characterization. J Disper Sci Tech. 2020, in print… DOI:https://doi.org/10.1080/01932691.2019.1710184
  • Lagerwall JPF, Scalia G, eds. Liquid crystals with nano and microparticles. Singapore: World Scientific; 2017.
  • Stamatoiu O, Mirzaei J, Feng X, et al. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. In: editor, Tschierske C. Liquid crystals. Topics in current chemistry. Vol. 318, pp. 331–393. Berlin, Heidelberg: Springer; 2011.
  • Draude AP, Kalavalapalli TY, Iliut M, et al. Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Adv. 2020. in print. DOI:https://doi.org/10.1039/d0na00276c
  • Dierking I, Scalia G, Morales P. Liquid crystal-carbon nanotubes dispersions. Journal of Applied Physics. 2005;97: 044309.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2857.
  • Dolgov L, Yaroshchuk O, Lebovka M. Effect of electro-optical memory in liquid crystals doped with carbon nanotubes. Mol Cryst Liq Cryst. 2008;496(1):212.
  • Peterson MSE, Georgiev G, Atherton TJ, et al. Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes. Liq Cryst. 2018;45(3):450.
  • García-García A, Vergaz R, Algorri JF, et al. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes. Beilstein J Nanotechnol. 2015;6:396.
  • Di AC, Ettorre V, Fontana A. Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol. 2014;5:1675.
  • Charles DLC, Li W. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources. 2012;208:74.
  • Kim J-H, Lee KH, Overzet LJ, et al. Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett. 2011;11(7):2611.
  • Battigelli A, Moyon CM, Ros TD, et al. Endowing Carbon Nanotubes With Biological and Biomedical Properties by Chemical Modifications. Adv Drug Deliv Rev. 2013;65(15):1899.
  • Postma HWC, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science. 2001;293(5527):76.
  • Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res. 2002;35:1026.
  • Heller DA, Jin H, Martinez BM, et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol. 2009;4:114.
  • Zaporotskova IV, Boroznina NP, Parkhomenko YN, et al. Carbon nanotubes: sensor properties. A review. Mod Electro Mater. 2016;2(4):95.
  • Sireesha M, Babu VJ, Kiran ASK, et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018;4:36.
  • Yan Y, Miao J, Yang Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev. 2015;44:3295.
  • Wei J, Jia Y, Shu Q, et al. Double-Walled Carbon Nanotube Solar Cells. Nano Lett. 2007;7:2317.
  • Crescenzo AD, Bardini L, Sinjari B, et al. Surfactant hydrogels for the dispersion of carbon‐nanotube‐based catalysts. A Chem Eur J. 2013;19(48):16415.
  • Newman P, Minett A, Behnke RE, et al. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 2013;9(8):1139.
  • Hu H, Ni Y, Montana V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 2004;4(3):507.
  • Hsu SH, Wu MC, Chen S, et al. Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon. 2012;50:896.
  • Yadav SP, Singh S. Carbon nanotube dispersion in nematic liquid crystals: an overview. Prog Mater Sci. 2016;80:38.
  • Schoot PV, Nita VP, Kralj S. Alignment of carbon nanotubes in nematic liquid crystals. J Phys Chem B. 2008;112:4512.
  • Kalakonda P, Cabrera Y, Judith R, et al. Studies of electrical and thermal conductivities of sheared multi-walled carbon nanotube with isotactic polypropylene polymer composites. Nanomater Nanotechnol. 2015;5(2):1.
  • Malik P, Chaudhary A, Mehra R, et al. Electro-optic, thermo-optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films. J Mol Liq. 2012;165:7.
  • Middha M, Kumar R, Raina KK. Improved electro-optical response of induced chiral nematic liquid crystal doped with multi-walled carbon nanotubes. Ferroelectrics. 2016;495(1):75.
  • Shriyan SK, Fontecchio AK. Improved electro-optic response of polymer dispersed liquid crystals doped with oxidized multiwalled carbon nanotubes. Mol Cryst Liq Cryst. 2010;525:158.
  • Tripathi S, Prakash J, Chandran A, et al. Enhanced dielectric and electro-optical properties of a newly synthesised ferroelectric liquid crystal material by doping gold nanoparticle-decorated multiwalled carbon nanotubes. Liq Cryst. 2013;40(9):1255.
  • Shukla RK, Chaudhary A, Bubnov A, et al. Electrically switchable birefringent self-assembled nanocomposites: ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq Cryst. 2020:1–11 In press. DOI:https://doi.org/10.1080/02678292.2020.1720328
  • Shukla RK, Chaudhary A, Bubnov A, et al. Multi-walled carbon nanotubes-ferroelectric liquid crystal nanocomposites: effect of cell thickness and dopant concentration on electro-optic and dielectric behavior. Liq Cryst. 2018;45(11):1672.
  • Singh D, Singh UB, Pandey MB, et al. Dielectric and electro-optic behaviour of nematic-SWCNT nanocomposites under applied bias field. Liq Cryst. 2019;46(9):1389.
  • Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liq Cryst. 2019;46:2057.
  • Verma R, Mishra M, Dhar R, et al. Single walled carbon nanotubes persuaded optimization of the display parameters of a room temperature liquid crystal 4-pentyl-4′cyanobiphenyl. J Mol Liq. 2016;221:190.
  • Singh P, Campidelli S, Giordani S, et al. Organic functionalisation and characterisation of single-walled carbon nanotubes. M Chem Soc Rev. 2009;38:2214.
  • Peng X, Wong SS. Functional covalent chemistry of carbon nanotube surfaces. Adv Mater. 2009;21:625.
  • Lee Y, Geckeler KE. Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv Mater. 2010;22:4076.
  • Ganguly P, Kumar A, Tripathi S, et al. Effect of functionalisation of carbon nanotubes on the dielectric and electro-optical properties of ferroelectric liquid crystal. Liq Cryst. 2014;41(6):793.
  • Kumar J, Manjuladevi V, Gupta RK, et al. Fast response in TN liquid-crystal cells: effect of functionalised carbon nanotubes. Liq Cryst. 2016;43(4):488.
  • Wolarz E, Bauman D, Jadżyn J, et al. Prenematic self-assembling of mesogenic molecules in isotropic liquid and orientational order in nematic phase. Acta Phys Polonica A. 2011;120:447.
  • [cited 2020 May 10]https://pubchem.ncbi.nlm.nih.gov/compound/1-_4-hexylcyclohexyl_-4-isothiocyanatobenzene#section= 3D-Conformer
  • Jadzyn J, Hellemans L, Czechowski G, et al. Dielectric and viscous properties of 6CHBT in the isotropic and nematic phases. Liq Cryst. 2000;27:613.
  • Verma R, Dhar R, Rath MC, et al. Electron beam irradiation induced changes in the dielectric and electro-optical properties of a room temperature nematic display material 4-(trans-4ʹ-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT). J Phys Chem Sol. 2012;73:288.
  • Paul SN, Dhar R, Verma R, et al. Change in dielectric and electro-optical properties of a nematic material (6CHBT) due to the dispersion of BaTiO3 nanoparticles. Mol Cryst Liq Cryst. 2011;545(1):1329.
  • Gupta TK, Singh BP, Mathur RB, et al. Multi-walled carbon nanotube-graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale. 2014;6(2):842.
  • Gupta TK, Singh BP, Dhakate SR, et al. Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A. 2013;1(32):9138.
  • Srivastava SL, Dhar R. Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Indian J Pure Appl Phys. 1991;29:745.
  • Dhar R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistances. Indian J Pure Appl Phys. 2004;42:56.
  • Srivastava SL. Electrical properties of ferroelectric liquid crystals. Proc Natl Acad Sci India. 1993;63:311–332.
  • Gouda F, Skarp K, Lagerwall ST. Dielectric studies of the soft mode and Goldstone mode in ferroelectric liquid crystals. Ferroelectrics. 1991;113:165.
  • Verma R, Dhar R, Rath MC, et al. Optimization of the display parameters of a room temperature nematic material (6CHBT) by using electron beam irradiation. Journal of Display Technology. 2010;6(1):8.
  • Verma R, Tripathi A, Dhar R. Enhancement in the thermal stability of the mesophases of 4-n-(decyloxy) benzoic acid due to Li ion beam irradiation. J Mol Liq. 2013;177:409.
  • Verma R, Dabrowski R, Dhar R. Thermodynamic, electrical and electro-optical features of the racemic mixture of an antiferroelectric liquid crystal suitable for displays. Liq Cryst. 2015;42(12):1785.
  • Kunihisa KS, Satomi Y. Phase transitions of cholesteryl acetylferulate. Mol Cryst Liq Cryst. 1986;141:1.
  • Srivastava SL, Dhar R, Kurik MV. Change in electrical and thermodynamical properties of Cholesteryl Myristate on irradiation. Mol Mat. 1993;2:261.
  • Duran H, Gazdecki B, Yamashita A, et al. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liq Cryst. 2005;32:815.
  • Yildiz S, Cetinkaya MC, Ozbek H. The influence of multi-walled carbon nanotube doping on liquid crystalline phase transitions of a smectogen octylcyanobiphenyl: A high-resolution birefringence study. Fluid Phase Equilibria. 2019;495:47.
  • Park KA, Lee SM, Lee SH, et al. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J Phys Chem C. 2007;111:1620.
  • Baik IS, Jeon SY, Lee SH, et al. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl Phys Lett. 2005;87:263110.
  • Jeon SY, Park KA, Baik I-S, et al. Dynamic response of carbon nanotubes dispersed in nematic liquid crystal. NANO. 2007;02:41.
  • Kavitha C, Madhu Mohan MLN. Influence of MWCNT on the properties of hydrogen bonded liquid crystals. Mol Cryst Liq Cryst. 2017;652:172.
  • Basu R, Lannacchione GS. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal. Phys Rev E. 2010;81:051705.
  • Cetinkaya MC, Yildiz S, Ozbek H. The effect of -COOH functionalized carbon nanotube doping on electro-optical, thermo-optical and elastic properties of a highly polar smectic liquid crystal. J Mol Liq. 2018;272:801.
  • Verma R, Mishra M, Dhar R, et al. Enhancement of electrical conductivity, director relaxation frequency and slope of electro-optical characteristics in the composites of single-walled carbon nanotubes and a strongly polar nematic liquid crystal. Liq Cryst. 2017;44(3):544.
  • Maier W, Meier G. A simple theory of the dielectric are some homogeneous criteria oriented liquid crystal phases of nematic type. Z Naturf. 1961;16A: 262.
  • Kresse H. Advances in liquid crystals. New York: Academic Press. Brown GH. editor. 1983. Vol. 6. 109.
  • Edwards DMF, Madden PA. A molecular theory of the dielectric permittivity of a nematic liquid crystal. Mol Phys. 1983;48:471.
  • Neeraj, Raina KK. Multiwall carbon nanotubes doped ferroelectric liquid crystal composites: A study of modified electrical behavior. Physica B. 2014;434:1.
  • Jonscher AK. Dielectric relaxation in solids. London: Chelsea; 1983.
  • Srivastava SL, Dhar R. Effect of γ-irradiation on liquid crystalline properties of cholesteryl pelargonate (Nonanoate). Radiat Phys Chem. 1996;47:287.
  • Wang Y, Weng GJ. Chapter 4, Electrical conductivity of carbon nanotube and graphene-based nanocomposites. In: Meguid SA, Weng GJ, editors. Micromechanics and nanomechanics of composite solids. Springer International Publishing, Switzerland AG P; 2018. p. 124.
  • Manjuladevi V, Gupta RK, Kumar S. Effect of functionalized carbon nanotubes on electro-optic and dielectric properties of a liquid crystal. J Mol Liq. 2012;171:60.
  • Shukla RK, Raina KK, Hamplova V, et al. Dielectric behaviour of the composite system: multiwall carbon nanotubes dispersed in ferroelectric liquid crystal. Phase Transitions. 2011;84:850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.