419
Views
7
CrossRef citations to date
0
Altmetric
Article

Thermal stability and electro-optical characteristics of polymer stabilised blue phase liquid crystalline materials: a role of polymer concentration

&
Pages 2323-2331 | Received 04 Jun 2020, Accepted 12 Jul 2020, Published online: 22 Jul 2020

References

  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997–1000.
  • Castles F, Morris SM, Terentjev EM, et al. Thermodynamically stable blue phases. Phys Rev Lett. 2010;104:157801.
  • Jo SY, Jeon SW, Kim BC, et al. Polymer stabilization of liquid-crystal blue phase II toward photonic crystals. ACS Appl Mater Interfaces. 2017;9:8941–8947.
  • Cao W, Muñoz A, Palffy MP, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1:111–113.
  • Rahman MA, Yamana I, Yeow YG, et al. Electro-optic potential of room and high temperature polymer stabilised blue phase liquid crystal. Adv Mater Res. 2014;895:186–189.
  • Yang J, Zhao W, He W, et al. Liquid crystalline blue phase materials with three-dimensional nanostructures. J Mater Chem C. 2019;7:13352–13366.
  • Chen KM, Gauza S, Xianyu H, et al. Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J Disp Technol. 2010;6:49–51.
  • Manda R, Kim MS, Jeong SE, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive. Liq Cryst. 2017;44:1059–1068.
  • Li Y, Huang S, Zhou P, et al. Polymer-stabilized blue phase liquid crystals for photonic applications. Adv Mater Technol. 2016;1:1600102.
  • Rao L, Wu ST. Low-voltage blue phase liquid crystal displays. Liq Cryst Today. 2015;24:3–12.
  • Hussain Z, Danner D, Masutani A, et al. Investigation of reactive acrylic monomers for their effect on the temperature range and operating voltage of polymer-stabilised optically isotropic liquid crystal blue phases. Liq Cryst. 2012;39:1345–1357.
  • Rahman MDA, Said SM, Balamurugan S. Blue phase liquid crystal: strategies for phase stabilization and device development. Sci Technol Adv Mater. 2015;16:033501–033521.
  • Wang L, He W, Xiao X, et al. Hysteresis-free blue phase liquid crystal stabilized by ZnS nanoparticle. Small. 2012;8:1–5.
  • Li X, Sun DP, Hou DS, et al. Hysteresis-free and fast response polymer stabilised blue phase liquid crystals. Liq Cryst. 2019;1–5. DOI:10.1080/02678292.2019.1673910.
  • Manda R, Pagidi S, Heo YJ, et al. Polymer-stabilized monodomain blue phase diffraction grating. Adv Mater Interfaces. 2020;1:1901923–1901930.
  • Li Y, Huang S, Zhou P, et al. Polymer-stabilized blue phase liquid crystals for photonic applications. Adv Mater Technol. 2016;1:1600102–1600129.
  • Po CW, Hsin LC, Natalya V, et al. Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound. J Mol Liq. 2018;267:138–143.
  • Kasch N, Dierking I, Turner M. Stabilization of the liquid crystalline blue phase by the addition of short-chain polystyrene. Soft Matter. 2013;9:4789.
  • Wang L, He W, Wang Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. J Mater Chem C. 2013;1:6526.
  • Zhu D, Chen B, Chen Z, et al. Low-voltage polymer-stabilised blue-phase liquid crystals with oleic acid (OA)-modified LaF3 nanoparticles. Liq Cryst. 2018;45:1654–1660.
  • Wang J, Lin CG, Li J, et al. Stabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticles. Mol Cryst Liq Cryst. 2016;634:12–23.
  • Lim G, Hwang JH, Kikuchi H, et al. Effect of reactive monomer concentration on electro-optical properties in polymer-stabilized blue phase liquid crystals with identical chiral dopant concentrations. Mol Cryst Liq Cryst. 2015;609:54–60.
  • Zheng ZG, Wang C, Shen D, et al. Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals. J Mater Chem C. 2013;1:6471–6478.
  • Chen LJ, Dai JH, Lin JD, et al. Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities. ACS Appl Mater Interfaces. 2018;39:33307–33315.
  • Lin P, Yan Q, Wei Z, et al. All-inorganic perovskite quantum dots stabilized blue phase liquid crystals. Opt Express. 2018;26:18310–18319.
  • Yokoyama S, Mashiko S, Kikuchi H, et al. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv Mater. 2006;18:48–51.
  • Li Y, Wu ST. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19:8045–8050.
  • Lin TH, Li Y, Wang CT, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv Mater. 2013;25:5050–5054.
  • Lin YH, Chen HS, Chiang TH, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals. Opt Express. 2011;19:2556–2561.
  • Jo SY, Jeon SW, Kim BC, et al. Polymer stabilization of liquid-crystal blue phase II toward photonic crystals. ACS Appl Mater Interfaces. 2017;9:8941–8947.
  • Dierking I, Blenkhorn W, Credland E, et al. Stabilising liquid crystalline blue phases. Soft Matter. 2012;8:4355–4362.
  • Wang L, He W, Wang Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. J Mater Chem C. 2013;1:6526–6531.
  • Kikuchi H, Izena S, Higuchi H, et al. Giant polymer lattice in a polymer-stabilized blue phase liquid crystal. Soft Matter. 2015;11:4572–4575.
  • Chan BH, Choi WK. Three-dimensional corrugated electrode structure for low-voltage high-transmittance blue-phase liquid crystal displays. Liq Cryst. 2019;46:806–815.
  • Hsieh JL, Choi WK. Step-shaped electrode for low-voltage and high-optical-efficiency blue-phase transflective liquid crystal displays. Liq Cryst. 2019;46:1043–1051.
  • Li GP, Dou H, Chu F, et al. Low voltage and high transmittance transflective blue-phase liquid crystal display with opposite polar electrodes. Liq Cryst. 2018;45:410–414.
  • Tian LL, Chu F, Dou H, et al. A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq Cryst. 2018;45:1259–1263.
  • Liao RC, Zhan XY, Xu XW, et al. Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell. Liq Cryst. 2020;47:715–722.
  • Singh A, Jayoti D, Khushboo, et al. Electro-optics of polymer-stabilised blue phase liquid crystal in in-plane switching mode. Liq Cryst. 2016;43:1714–1720.
  • Singh A, Malik P. Phase transition and electro‐optic studies in polymer stabilized blue phase liquid crystal. Macromol.Symp. 2015;357:141–147.
  • Singh A, Malik P, Jayoti D. Observation of blue phase in chiral nematic liquid crystal and its stabilization by silica nanoparticles. Int J Mod Phys B. 2016;30:165001.
  • Malik P, Yadav S, Khushboo. Textural, phase transition and electro-optic studies of polymer-stabilized blue phase liquid crystals. J Mol Struct. 2019;1188:51–56.
  • Kemiklioglu E, Chein LC, Haseba Y. Polymer effect on polymer-stabilized blue phase liquid crystals. SID. 2014;45:1399–1402.
  • Chen B, Zhu D, Huo F, et al. Influence of monomer structure on the properties of blue phase liquid crystal. Liq Cryst. 2018;45:1637–1643.
  • Gao L, Wang K, Zhao R, et al. Effect of dual functional monomer on the electro-optical properties of blue phase liquid crystals. Polymers. 2019;11:1128.
  • Hisakado Y, Kikuchi H, Nagamura T, et al. Large electro-optic Kerr effect in polymer-stabilised liquid crystalline blue phases. Adv Mater. 2005;17:96–98.
  • Yan J, Lin J, Li Q, et al. Influence of long-lasting electric field on the formation of monodomain polymer stabilized blue phase liquid crystals. J Appl Phys. 2019;125:024501.
  • Kato T. Liquid crystalline functional assemblies and their supramolecular structures. New York: Springer; 2001. p. 99–117.
  • Yan J, Wu ST. Effect of polymer concentration and composition on blue phase liquid crystals. J Disp Technol. 2011;7:490–493.
  • Menez L, Zaquine I, Maruani A, et al. Bragg thickness criterion for intracavity diffraction gratings. J Opt Soc Am B. 2002;19:965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.