234
Views
4
CrossRef citations to date
0
Altmetric
Article

Liquid Crystals for IR: Part III - Bi- and multicomponent mixtures based on perfluoroalkyl or perfluoroalkoxy terminated oligophenyls and tolanes

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2161-2170 | Received 16 Jul 2020, Accepted 12 Aug 2020, Published online: 20 Aug 2020

References

  • Harmata P, Herman J, Kula P. Liquid crystals for IR: part I – synthesis and properties of perfluoroalkyl or perfluoroalkoxy terminated oligophenyls. Liq Cryst. 2019;1–22. DOI:10.1080/02678292.2019.1595760
  • Harmata P, Herman J, Kula P. Liquid crystals for IR: part II synthesis and properties of perfluoroalkyl- or perfluoroalkoxy-terminated tolanes. Liq Cryst;2019. PubMed PMID: WOS:000469649100001. DOI:10.1080/02678292.2019.1606353
  • Liquid Crystals for Display Application. Ullmann’s encyclopedia of industrial chemistry.
  • Pauluth D, Tarumi K. Advanced liquid crystals for television. J Mater Chem. 2004;14(8):1219–1227. PubMed PMID: WOS:000220711000001.
  • Pauluth D, Tarumi K. Optimization of liquid crystals for television. J Soc Inf Disp. 2005;13(8):693–702.
  • Chigrinov VG, Yakovlev DA. Optimization and modeling of liquid crystal displays. Mol Cryst Liq Cryst. 2006;453(1):107–121.
  • Chigrinov VG. Liquid crystal applications in photonics. Front Optoelectron China. 2010;3(1):103–107.
  • Chigrinov VG. Liquid crystal devices for photonics applications - art. no. 67811M. Proc SPIE - Int Soc Opt Eng. 2007;6781:46.
  • Pérez I, Pena J, Torres J, et al. Optoelectronic multiplexer for digital data processing based on lipid crystal pixels and optical fiber elements. Opto-Electronics Review 2007;15(2):78.
  • Ma -L-L, Hu W, Zheng Z-G, et al. Light-activated liquid crystalline hierarchical architecture toward photonics. Adv Opt Mater. 2019;7(16):1900393.
  • Cheng Z, Wang T, Li X, et al. NIR-Vis-UV Light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl Mater Interfaces. 2015;7(49):27494–27501. Epub 2015/11/26. PubMed PMID: 26592303.
  • Yaghmaee P, Karabey OH, Bates B, et al. Electrically tuned microwave devices using liquid crystal technology. Int J Antennas Propag. 2013;2013:824214.
  • Mittra R, Nasri A, Donia O, et al. Novel low-cost phase shifters for millimeter wave applications. 2018. 2127–2128 p.
  • Nose T, Ito R, Honma M. Potential of liquid-crystal materials for millimeter-wave application. Appl Sci-Basel. 2018;8(12):ARTN 2544. PubMed PMID: WOS:000455145000212.
  • Polat E, Tesmer H, Reese R, et al. Reconfigurable millimeter-wave components based on liquid crystal technology for smart applications. Crystals. 2020;10(5):346. PubMed PMID.
  • Reuter M, Garbat K, Vieweg N, et al. Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides. J Mater Chem C. 2013;1(29):4457–4463. PubMed PMID: WOS:000321426600007.
  • Reuter M, Vieweg N, Fischer BM, et al. Highly birefringent, low-loss liquid crystals for terahertz applications. Apl Mater. 2013;1(1):Unsp 01210710. PubMed PMID: WOS:000332272300011.
  • Chodorow U, Parka J, Kula P, et al. Terahertz properties of fluorinated liquid crystals. Liq Cryst. 2013;40(11):1586–1590. PubMed PMID: WOS:000327421600017.
  • Chodorow U, Chojnowska O, Garbat K, et al., editors. Liquid crystal materials with high birefringence for THz applications. International Conference on Infrared, Millimeter; Tucson, Arizona, USA. 2014 Sept 14-19.
  • Li X, Tan N, Pivnenko M, et al. High-birefringence nematic liquid crystal for broadband THz applications. Liq Cryst. 2016;43(7):955–962.
  • Bulja S, Mirshekar-Syahkal D, Yazdanpanahi M, et al., editors. Liquid crystal based phase shifters in 60 GHz band. The 3rd European Wireless Technology Conference; Paris, France. 2010 Sept 27-28.
  • Li J, Chu D. Liquid crystal-based enclosed coplanar waveguide phase shifter for 54–66 GHz applications. Crystals. 2019;9(12). DOI:10.3390/cryst9120650
  • Lapanik V, Sasnouski G, Timofeev S, et al. New highly anisotropic liquid crystal materials for high-frequency applications. Liq Cryst. 2018;45(8):1242–1249.
  • Lane S, Brown J, Tremer M, et al. Radiation testing of liquid crystal optical devices for space laser communication. Opt Eng. 2009;48(11):114002.
  • Kuyken B, Liu XP, Osgood RM, et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt Express. 2011;19(21):20172–20181. PubMed PMID: WOS:000296065700042.
  • Zou Y, Chakravarty S, Chung C-J, et al. Mid-infrared silicon photonic waveguides and devices [Invited]. Photonics Res. 2018;6:254.
  • Soref R. Mid-infrared photonics in silicon and germanium. Nat Photonics. 2010;4(8):495–497. PubMed PMID: WOS:000280495400003.
  • Fang Y, Ge Y, Wang C, et al. Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 2020;14(1):1900098.
  • Rogalski A. Infrared detectors: an overview. Infrared Phys Technpl. 2002;43(3–5):187–210. Pii S1350-4495(02)00140–8. PubMed PMID: WOS:000176485100012.
  • Ren H, Wu S-T. Introduction to adaptive lenses. Hoboken, N.J.: Wiley; 2012.
  • Rogalski A, Chrzanowski K. Infrared devices and techniques. Opto-Electron Rev. 2002;10(2):111–136. PubMed PMID: WOS:000176277300004.
  • Chodorow U, Mazur R, Morawiak P, et al. Switchable Fabry–Perot filter for mid-infrared radiation. Liq Cryst. 2019;46(12):1877–1880.
  • Davis S, Rommel S, Johnson S, et al. Electro-optic steering of a laser beam. SPIE Newsroom. 2011. DOI:10.1117/2.1201105.003715
  • McManamon PF, Dorschner TA, Corkum DL, et al. Optical phased array technology. P Ieee. 1996;84(2):268–298. PubMed PMID: WOS:A1996TU73600008.
  • Frantz J, Myers J, Bekele R, et al. Non-mechanical beam steering in the mid-wave infrared. 2017, 101810X.
  • Xu S, Ren H, Wu S-T. Adaptive liquid lens actuated by liquid crystal pistons. Opt Express. 2012;20(27):28518–28523.
  • Saito M, Hayashi K. Integration of liquid crystal elements for creating an infrared Lyot filter. Opt Express. 2013;21(10):11984–11993.
  • Du X, Li Y, Liu Y, et al. Electrically switchable bistable dual frequency liquid crystal light shutter with hyper-reflection in near infrared. Liq Cryst. 2019;46(11):1727–1733.
  • Choi GJ, Jung HM, Lee SH, et al. Infrared shutter using cholesteric liquid crystal. Appl Opt. 2016;55(16):4436–4440.
  • Zhang Y, Song P, Xia W, et al. A low-loss and high birefringence fluoride photonic crystal fiber in near infrared band. Optik. 2019;185:772–776.
  • Rave E, Roodenko K, Katzir A. Infrared photonic crystal fiber. Appl Phys Lett. 2003;83:1912–1914.
  • Herman J, Kula P. Design of new super-high birefringent isothiocyanato bistolanes - synthesis and properties. Liq Cryst. 2017;44(9):1462–1467. PubMed PMID: WOS:000407515700013.
  • Weglowska D, Kula P, Herman J. High birefringence bistolane liquid crystals: synthesis and properties. Rsc Adv. 2016;6(1):403–408. PubMed PMID: WOS:000367250900049.
  • Dabrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3(3):443–482. PubMed PMID: WOS:000209341800005.
  • Venkata Sai D, Sathyanarayana P, Sastry VSS, et al. Birefringence, permittivity, elasticity and rotational viscosity of ambient temperature, high birefringent nematic liquid crystal mixtures. Liq Cryst. 2014;41(4):591–596.
  • Herman J, Harmata P, Strzezysz O, et al. Synthesis and properties of chosen 4-butyl-phenyltolane derivatives - On the influence of core substitution on birefringence, mesomorphic and dielectric properties. J Mol Liq. 2018;267:511–519. PubMed PMID: WOS:000447575800070.
  • Dąbrowski R, Dziaduszek J, Garbat K, et al. Nematic compounds and mixtures with high negative dielectric anisotropy. Liq Cryst. 2017;44(10):1534–1548.
  • Wu S-T, Cox RJ. Potential infrared liquid crystals. Liq Cryst. 1989;5(5):1415–1424.
  • Hu M, An Z, Li J, et al. Low mid-infrared absorption tolane liquid crystals terminated by 2,2-difluorovinyloxyl: synthesis, characterization and properties. J Mater Chem C. 2016;4(22):4939–4945.
  • Peng F, Chen Y, Wu S-T, et al. Low loss liquid crystals for infrared applications. Liq Cryst. 2014;41:1545–1552.
  • Chen Y, Xianyu H, Sun J, et al. Low absorption liquid crystals for mid-wave infrared applications. Opt Express. 2011;19:10843–10848.
  • Hu M, An Z, Li J, et al. Tolane liquid crystals bearing fluorinated terminal group and their mid-wave infrared properties. Liq Cryst. 2014;41(12):1696–1702.
  • Kula P, Bennis N, Marć P, et al. Perdeuterated liquid crystals for near infrared applications. Opt Mater. 2016;60:209–213.
  • Wu ST, Wang QH, Kempe MD, et al. Perdeuterated cyanobiphenyl liquid crystals for infrared applications. J Appl Phys. 2002;92(12):7146–7148. PubMed PMID: WOS:000179495100026.
  • Wu S-T, Wang Q-H, Kempe M, et al. Perdeuterated cyanobiphenyl liquid crystals for infrared applications. J Appl Phys. 2003;92:7146–7148.
  • Wu S-T, Coates D, Bartmann E. Physical properties of chlorinated liquid crystals. Liq Cryst. 1991;10(5):635–646.
  • Pytlarczyk M, Dmochowska E, Czerwiriski M, et al. Effect of lateral substitution by chlorine and fluorine atoms of 4-alkyl-p-terphenyls on mesomorphic behaviour. J Mol Liq. 2019;292:UNSP 111379. PubMed PMID: WOS:000488658900047.
  • Wąchała A, Pytlarczyk M, Kula P. On the balance between nematic and smectic phases in 2′,3′-difluoro-4,4″-dialkyl-p-terphenyls. Liq Cryst. 2019;46(10):1558–1567.
  • Hird M. Fluorinated liquid crystals – properties and applications. Chem Soc Rev. 2007;36(12):2070–2095.
  • Kula P, Herman J, Pluczyk S, et al. Synthesis and mesomorphic properties of laterally substituted 4,4 “‘-dialkyl-p-quaterphenyls. Liq Cryst. 2014;41(4):503–513. PubMed PMID: WOS:000333992800003.
  • Dabrowski R, Dziaduszek J, Bozetka J, et al. Fluorinated smectics - New liquid crystalline medium for smart windows and memory displays. J Mol Liq. 2018;267:415–427. PubMed PMID: WOS:000447575800059.
  • Pytlarczyk M, Kula P. Synthesis and mesomorphic properties of 4,4”-dialkynyl-2ʹ,3ʹ-difluoro-p-terphenyls - the influence of C equivalent to C acetylene linking bridge. Liq Cryst. 2019;46(4):618–628. PubMed PMID: WOS:000465186600014.
  • Herman J, Dmochowska E, Pytlarczyk M, et al. Synthesis and mesomorphism of tetrafluoro substituted 4-cyano oligophenyls. Liq Cryst. 2019;46(11):1666–1671. PubMed PMID: WOS:000463577000001.
  • Szczucinski L, Dabrowski R, Urban S, et al. Synthesis, mesogenic and dielectric properties of fluorosubstituted isothiocyanatoterphenyls. Liq Cryst. 2015;42(12):1706–1729. PubMed PMID: WOS:000365658000007.
  • Czub J, Dabrowski R, Dziaduszek J, et al. Dielectric properties of ten three-ring LC fluorosubstituted isothiocyanates with different mesogenic cores. Phase Transitions. 2009;82:485–495.
  • Cox RJ, Johnson JF. Phase equilibria in liquid crystal mixtures. IBM J Res Dev. 1978;22(1):51–59.
  • Hulme DS, Raynes EP, Harrison KJ. Eutectic mixtures of nematic 4′-substitued 4-cyanobiphenyls. J Chem Soc Chem Commun. 1974;98–99. DOI:10.1039/C39740000098
  • Szulc J, Witkiewicz Z, Dabrowski R. Comparison of methods for determining the eutectic compositions of ternary liquid - crystalline mixtures. Mol Cryst Liq Cryst. 1984;109:2–4,125-142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.