234
Views
6
CrossRef citations to date
0
Altmetric
Article

Favourable combination of axial coordination and inclusion for effective chiral transfer from metal porphyrin to nematic liquid crystals

, , ORCID Icon, &
Pages 794-805 | Received 21 May 2020, Accepted 26 Aug 2020, Published online: 22 Sep 2020

References

  • Kitzerow H-S, Bahr C. Chirality in Liquid Crystals. New York (NY): Springer-Verlag Inc; 2001.
  • Kelly SM, O’Neill M. Liquid crystals for electro-optic applications. In: Nalwa. HS, editor. Handbook of advanced electronic and photonic materials and devices. V. 7: Liquid Crystals, Display and Laser Materials. N.Y. etc.: Academic Press; 2000. p. 1–66.
  • Yang D-K, Shin-Tson W. Fundamentals of liquid crystal devices. Second. (Wiley series in display technology). John Wiley & Sons, Ltd.; 2015.
  • Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem Int Ed. 2000;39:4216.
  • Chilaya G. Induction of chirality in nematic phases. Rev Phys Appl. 1981;16:193.
  • San Jose BA, Yan J, Akagi K. Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal. Angew Chem Int Edit. 2014;53:10641–10644.
  • Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116:15089.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Comm. 2018;9:228.
  • Onuchak LA, Arutunov JI, Kuraeva JG, et al. Method for analysis of structural and optical isomers. Russian patent RU 2528126. 2014 sept 10.
  • Matt B, Pondman KM, Asshoff SJ, et al. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals. Angew Chem Int Edit. 2014;53:12446.
  • Eelkema R. Photo-responsive doped cholesteric liquid crystals. Liq Cryst. 2011;38:1641–1652.
  • Van Delden RA, Schoevaars AM, Feringa BL, et al. Acceptor substituted chiroptical molecular switch: physical properties and photoisomerization behavior. Mol Cryst Liq Cryst. 2000;344:1–6.
  • Feringa BL, van Delden RA, Koumura N, et al. Chiroptical molecular switches. Chem Rev. 2000;100:1789–1816.
  • Popov P, Honaker LW, Mirheydari M, et al. Chiral nematic liquid crystal microlenses. Sci Rep. 2017;7:1603.
  • Popov N, Honaker LW, Popova M, et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials. 2018;11:20.
  • Cachelin P, Green JP, Peijs T, et al. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants. Adv Optical Mater. 2016;4:592–596.
  • Iwan A, Boharewicz B, Tazbir I, et al. Effect of chiral photosensitive liquid crystalline dopants on the performance of organic solar cells. Solid-State Electron. 2015;104:53–60.
  • Ishida Y, Kai Y, Kato S, et al. Two‐component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew Chem Int Edit. 2008;47:8241–8245.
  • Van Delden RA, Feringa BL. Color indicators of molecular chirality based on doped liquid crystals. Angew Chem Int Edit. 2001;40:3198–3200.
  • Van Delden RA, Koumura N, Harada N, et al. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. PNAS. 2002;99:4945–4949.
  • Zhao D, van Leeuwen T, Cheng J, et al. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat Chem. 2017;9:250–256.
  • Yoshizawa A. Nanostructured assemblies of liquid-crystalline supermolecules: from display to medicine. Liq Cryst. 2019;46;1950–1972.
  • Eelkema R, Feringa BL. Amplification of chirality in liquid crystals. Org Biomol Chem. 2006;4:3729–3745.
  • Ferrarini A, Pieraccini S, Masiero S, et al. Chiral amplification in a cyanobiphenyl nematic liquid crystal doped with helicene-like derivatives. Beilstein J Org Chem. 2009;5:1.
  • Eelkema R Liquid crystals as amplifiers of molecular chirality [dissertation]. NL: University of Groningen: s.n.; 2006.
  • Gottarelli G, Spada GP. Induced cholesteric mesophases: origin and application. Mol Cryst Liq Cryst. 1985;123:1,377–388.
  • Eliel EL, Wilen SH. Stereochemistry of organic compounds. London: Wiley; 1994.
  • Holzwarth R, Bartsch R, Cherkaoui Z, et al. New 2,2-substituted 6,6-dimethylbiphenyl derivatives inducing strong helical twisting power in liquid crystals. Eur J Org Chem. 2005;16:3536–3541.
  • Holzwarth R, Bartsch R, Cherkaoui Z, et al. New 2,2ʹ-substituted 4,4ʹ-dimethoxy-6,6ʹ-dimethyl[1,1ʹ-biphenyls], inducing a strong helical twisting power in liquid crystals. Chem Eur J. 2004;10:3931–3935.
  • Di Matteo A, Todd SM, Gottarelli G, et al. Correlation between molecular structure and helicity of induced chiral nematics in terms of short-range and electrostatic-induction interactions. The case of chiral biphenyls. J Am Chem Soc. 2001;123:7842–7851.
  • Zhang H, Liu W, Qin A, et al. Helical twisting behaviour of new chiral dopants with (S)-1, 2-propanediol units for nematic liquid crystals. Liq Cryst. 2010;37:317–324.
  • Kashikawa K, Furukawa Y, Watanabe T, et al. Why chiral tartaric imide derivatives give large helical twisting powers in nematic liquid crystal phases: substituent-effect approach to investigate intermolecular interactions between dopant and liquid crystalline molecules. Liq Cryst. 2017;44:956–968.
  • Mandle RJ, Goodby JW. An experimental and computational study of calamitic and bimesogenic liquid crystals incorporating an optically active [2,2]-paracyclophane. Liq Cryst. 2018;45(11):1567–1573.
  • Lemieux RP. Molecular recognition in chiral smectic liquid crystals: the effect of core–core interactions and chirality transfer on polar order. Chem Soc Rev. 2007;36:2033–2045.
  • Bauer M, Hartmann L, Kruger S, et al. Structural aspects and host effects of the chirality transfer by mesogenic substituted aminoalcohols. Mol Cryst Liq Cryst. 2016;626:1–11.
  • Tojo K, Hirose T, Aoki Y. Synthesis of new chiral dopants derived from naproxen for nematic liquid crystals. Liq Cryst. 2008;35:681–687.
  • Huang W, Zhang XG, Yang GD, et al. Influence of terminal alkyl chain length on helical twisting property of chiral 1,2-propanediol derivatives. Chin Chem Lett. 2009;20:1435–1438.
  • Celebre G, de Luca G, Maiorino M, et al. Solute−solvent interactions and chiral induction in liquid crystals. J Amer Chem Soc. 2005;127:11736–11744.
  • Burmistrov VA, Novikov IV, Aleksandriiskii VV, et al. Intermolecular interactions and chiral induction in nematic liquid crystal phase by camphorsubstituted 2,3-dicyanopyrazine. J Mol Liq. 2017;244C:398–404.
  • Aleksandriiskii VV, Novikov IV, Monakhov LO, et al. Orientational effects of h-bonding in the chirality transfer from (2R,3R) (−) 2,3-butandiol to polar nematic liquid crystal. J Mol Liq. 2019;274:550–555.
  • Duda L, Czajkowski M, Potaniec B, et al. Helical twisting power and compatibility in twisted nematic phase of new chiral liquid crystalline dopants with various liquid crystalline matrices. Liq Cryst. 2019;46:1769–1779.
  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: A twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Commun. 2018;54:3383–3386.
  • Pieraccini S, Masiero S, Ferrarini A, et al. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem Soc Rev. 2011;40:258–271.
  • Kamberaj H, Osipov MA, Low RJ, et al. Helical twisting power and chirality indices. Mol Phys. 2004;102:431–446.
  • Neal M, Kamberaj H, Low RJ. Some calculations of molecular chirality. Mol Cryst Liq Cryst. 2005;439:71/[1937]-77/[1943].
  • Watanabe G, Yoshida J. Molecular dynamics approach for predicting helical twisting powers of metal complex dopants in nematic solvents. J Phys Chem B. 2016;120:6858–6864.
  • Yoshida J, Watanabe G, Kakizawa K, et al. Tris(β-diketonato) Ru(III) complexes as chiral dopants for nematic liquid crystals: the effect of the molecular structure on the helical twisting power. Inorg Chem. 2013;52:11042–11050.
  • Engelmann M, Braun M, Kuball H‐G. Helical twisting power of chiral titanium complexes in nematic compounds. Liq Cryst. 2007;34:73–77.
  • Braun M, Hahn A, Engelmann M, et al. Bis-chelated imine-alkoxytitanium complexes: novel chiral dopants with high helical twisting power in liquid crystals. Chem Eur J. 2005;11:3405–3412.
  • Kadish KM, Smith KM, Guilard R, editors. Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine .Vol.7, Physicochemical Characterization. Singapore, World Scientific Publishing: Co. Pte. Ltd.; 2010.
  • Kobayashi N. Optically active porphyrin systems analyzed by circular dichroism. In: Kadish KM, Smith KM, Guilard R, editors. Handbook of porphyrin science. Vol. 7. Singapore: World Scientific; 2010. Ch. 33; p. 147–240.
  • Lu H, Kobayashi N. Optically active porphyrin and phthalocyanine systems. Chem Rev. 2016;116:6184–6261.
  • Lehmann M, Dechant M, Gerbig L, et al. Supramolecular click procedures in liquid crystals. Liq Cryst. 2019;46:1985–1994.
  • Burmistrov VA, Novikov IV, Aleksandriiskii VV, et al. Appearance of induced chiral nematic phase in solutions of 4-n-alkyloxy-4‘- cyanobyphenyles with symmetric camphorsubstituted hemiporphyrazines. J Mol Liq. 2019;287:110961.
  • Fukuda K, Suzuki H, Ni J, et al. Relationship between chemical structure and helical twisting power in optically active imine dopants derived from (R)-(+)-1-(1-Naphthyl) ethylamine. J Appl Phys. 2007;46:5208–5212.
  • Blinov LM Structure and properties of liquid crystals. Springer; 2011, XVIII, http://www.springer.com/978-90-481-8828-4 [cited 2011]
  • Parr RG, Weitao Y, editors. Density-functional theory of atoms and molecules. Oxford: University Press; 1989.
  • Becke AD. Density functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Granovsky AA Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html [cited 2013 Sep 5]
  • Andrienko GA, Chemcraft V 1.8. http://www.chemcraftprog.com [cited 2019 Mart 26]
  • http://www.ccdc.cam.ac.uk/mercury/[cited 2016 Mart 4]
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCHVerlag, GmbH, KGaA; 2003.
  • Dunmur DA, Fukuda A, Luckhurst GR. Physical properties of liquid crystals: nematics. London, United Kingdom: INSPEC; 2001.
  • Jeu WH. Physical properties of liquid crystalline materials. London: Gordon and Breach;1980.
  • Burmistrov VA, Alexandriysky VV, Koifman OI. Vodorodnaya svyaz’ v termotropnyh zhidkih kristallah [Hydrogen bond in thermotropic liquid crystals]. Moscow: KRASAND; 2019. Russian.
  • Jia S-L, Jentzen W, Shang M, et al. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylporphyrin complexes with nitrogenous bases. Inorg Chem. 1998;37:4402–4412.
  • Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Edit. 2013;52:8828–8878.
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45:2221–2252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.