240
Views
2
CrossRef citations to date
0
Altmetric
Article

Electro-optic and dielectric properties of polymer networks stabilised short pitch chiral smectic C* liquid crystal

, , , , &
Pages 1231-1246 | Received 13 Jul 2020, Accepted 15 Nov 2020, Published online: 20 Dec 2020

References

  • Meyer RB, Liebert L, Strzelecki L, et al. Ferroelectric liquid crystals. J Phys Lett. 1975;36:69–71.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Germany: Wiley-VCH; 1999.
  • Hikmet RAM, Lub J. Anisotropic networks with stable dipole orientation obtained by photo-polymerization in the ferroelectric state. J Appl Phys. 1995;77:6234–6238.
  • Hikmet RAM, Michielsen M. Anisotropic networks stabilized ferroelectric gels. Adv Math. 1995;7:300–304.
  • Held GA, Kosbar LL, Dierking I, et al. Confocal microscopy study of texture transitions in a polymer stabilized cholesteric liquid crystal. Phys Rev Lett. 1997;79:3443–3446.
  • Archer A, Dierking I, Osipov M. Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory. Phys Rev E. 2008;78:051703.
  • Guymon CA, Dougan LA, Martens PJ, et al. Polymerization conditions and electrooptic properties of polymer-stabilized ferroelectric liquid crystals. Chem Mater. 1998;10:2378–2388.
  • Petit M, Daoudi A, Ismaili M, et al. Distortion and unwinding of the helical structure in polymer-stabilized short-pitch ferroelectric liquid crystal. Eur Phys J E. 2006;20:327–333.
  • Labeeb A, Glesson HF, Hegmann T. Polymer stabilization of the smectic C-alpha* liquid crystal phase–Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens. Appl Phys Lett. 2015;107:232903.
  • Lester G, Coles H, Murayama A. Electro-optic behavior of low molar mass FELC’s doped with liquid crystal polymers. Ferroelectrics. 1993;148(1):389–399.
  • Petrova I, Gaj A, Pochiecha D, et al. Design and self-assembling behaviour of comb-like stereoregular cyclolinear methylsiloxane copolymers with chiral lactate groups. Liq Cryst. 2019;46(1):25–36.
  • Shen WB, Cao YP, Zhang CH, et al. Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals. Liq Crys. 2020;47:481–488.
  • Hikmet RAM. Anisotropic gels and plasticized networks formed by liquid crystal molecules. Liq Cryst. 1991;9:405–416.
  • Archer P, Dierking I. Elastic coupling in polymer stabilized ferroelectric liquid crystals. J Phys D: Appl Phys. 2008;41:155422.
  • Kaur S, Dierking I, Gleeson HF. Dielectric spectroscopy of polymer stabilised ferroelectric liquid crystals. Eur Phys J E. 2009;30:265–274.
  • Hikmet RAM. Anisotropic gels in liquid crystal devices. Adv Mater. 1992;4:679–683.
  • Fung YK, Yang DK, Ying S, et al. Polymer networks formed in liquid crystals. Liq Cryst. 1995;19:797–801.
  • Fung YK, Borstnik A, Zumer S, et al. Pretransitional nematic ordering in liquid crystals with dispersed polymer networks. Phys Rev E. 1997;55:1637–1645.
  • Wu PC, Chen HL, Rudakova NV, et al. Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with afluorine-containing compound. J Mol Liq. 2018;267:138–143.
  • Li X, Sun DP, Hou DS, et al. Hysteresis-free and fast response polymer-stabilised blue phase liquid crystals. Liq Cryst. 2020;47:673–677.
  • Liao RC, Zhan XY, Xu XW, et al. Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell. Liq Cryst. 2020;47:715–722.
  • Dierking I, Kosbar LL, Lowe AC, et al. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions. Liq Cryst. 1998;24:397–406.
  • Hu XW, Zeng WJ, Yang WM, et al. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liq Cryst. 2019;46:185–192.
  • Zhang W, Lub J, Schenning APHJ, et al. Polymer stabilized cholesteric liquid crystal siloxane for temperature-responsive photonic coatings. Int J Mol Sci. 2020;21(5):1803.
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro-optic switching in liquid crystals. Appl Phys Lett. 1980;36:899–901.
  • Dierking I. A review of polymer-stabilized ferroelectric liquid crystals. Materials. 2014;7:3568–3587.
  • Miyazaki Y, Furue H, Takahashi T, et al. Mesogenic polymer-stabilized FLCDs exhibiting asymmetric and symmetric (V-Shape) electrooptic characteristics. Mol Cryst Liq Cryst. 2001;364:491–499.
  • Nourry J, Sixou P, Mitov M, et al. Evolution of the switching current during the preparation of polymer network-ferroelectric liquid crystal microcomposites. Liq Cryst. 2000;27(1):35–42.
  • Bubnov A, Bobrovsky A, Rychetský I, et al. Self-assembling behavior of smart nanocomposite system: ferroelectric liquid crystal confined by stretched porous polyethylene film. Nanomaterials. 2020;10(8):1498.
  • Glogarová M, Novotná V, Bubnov A, et al. Dielectric response of ferroelectric liquid crystals in samples of finite thickness. Ferroelectrics. 2018;532(1):20–27.
  • Shukla RK, Chaudhary A, Bubnov A, et al. Multi-walled carbon nanotubes-ferroelectric liquid crystal nanocomposites: effect of cell thickness and dopant concentration on electro-optic and dielectric behaviour. Liq Cryst. 2018;45(11):1672–1681.
  • Beresnev LA, Chigrinov VG, Dergachev DI, et al. Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liq Cryst. 1989;5:1171–1177.
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch. Liq Cryst. 2017;44(4):748–756.
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of functional multicomponent liquid crystalline mixtures with nano-scale pitch fulfilling deformed helix ferroelectric mode demands. J Mol Liq. 2019;290:111329.
  • Bubnov A, Vacek C, Czerwiński M, et al. Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch. Beilstein J Nanotechnol. 2018;9:333–341.
  • Prakash J, Choudhary A, Mehta DS, et al. Effect of surface anchoring on optical bistability in deformed helix ferroelectric liquid crystals. Mol Cryst Liq Cryst. 2009;511:188–196.
  • Kaur S, Thakur AK, Chauhan R, et al. Bistability in deformed helix ferroelectric liquid crystal. J Appl Phys. 2004;96:2547–2551.
  • Vladimirov FL, Chaika AN, Collings N. Spatial light modulator based on hydrogenated amorphous silicon/deformed-helix ferroelectric liquid crystal structure: influence of dielectric mirror. Ferroelectrics. 2000;246:269–277.
  • Abdulhalim I, Moddel G. Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals. Mol Cryst Liq Cryst. 1991;200:79–101.
  • Kotova SP, Samagin SA, Pozhidaev EP, et al. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals. Phys Rev E. 2015;92:062502.
  • Brodzeli Z, Silvestri L, Michie A, et al. Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications. Liq Cryst. 2013;40(10):1427–1435.
  • Firth J, Ladouceur F, Brodzeli Z, et al. A novel optical telemetry system applied to flowmeter networks. Flow Meas Inst. 2016;48:15–19.
  • Kiselev AD, Pozhidaev EP, Chigrinov VG, et al. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch. Phys Rev E. 2011;83:031703.
  • Lapanik A, Rudzki A, Kinkead B, et al. Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: influence of chain length and tethered liquid crystal functional groups. Soft Matter. 2012;8:8722–8728.
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle-liquid crystal composites. Nanoscale. 2014;6:7743–7756.
  • Sood N, Khosla N, Singh D, et al. Dielectric investigation of pure carbon nanotube-doped deformed helix ferroelectric liquid crystals. Liq Cryst. 2012;39(10):1169–1174.
  • Sun Z, Yuan Z, Shi R, et al. Fringe field effect free high-resolution display and photonic devices using deformed helix ferroelectric liquid crystal. Liq Cryst. 2020:1–11. https://doi.org/10.1080/02678292.2020.1766137.
  • Kesaev VV, Kiselev AD, Pozhidaev EP. Modulation of unpolarized light in planar-aligned subwavelength-pitch deformed-helix ferroelectric liquid crystals. Phys Rev E. 2017;95:032705.
  • Silvestri L, Sirinivas H, Ladoveeur F. Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle. Phys Rev E. 2018;98:052707.
  • Bawa A, Choudhary A, Thakur AK, et al. Low-frequency dielectric processes in deformed helix ferroelectric liquid crystals. Appl Phys A. 2020;126:171.
  • Fünfschilling J, Schadt M. Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays. J Appl Phys. 1989;66:3877–3882.
  • Meyer RB. Ferroelectric liquid crystals; a review. Mol Cryst Liq Cryst. 1977;40:33–48.
  • Martinot Lagarde P. Unwinding of the helical texture of a smectic C* liquid crystal, through ferroelectric and dielectric anisotropic coupling with an applied field. Mol Cryst Liq Cryst. 1981;66:61–66.
  • Petit M, Daoudi A, Ismaili M, et al. Electroclinic effect in a chiral smectic-A liquid crystal stabilized by an anisotropic polymer network. Phys Rev E. 2006;74:061707.
  • Broer DJ, Hikmet RAM, Challah G. In-situ photo-polymerization of oriented liquid-crystalline acrylates, 4a) Influence of a lateral methyl substituent on monomer and oriented polymer network properties of a mesogenic diacrylate. Makromol Chem. 1989;190:3201–3215.
  • Cano R. Interpretation of Grandjean discontinuities. Bull Soc Fr Min Cryst. 1968;91:20–27.
  • Brunet M, Isaert N. Periodic structures in smectic C*-pitch and unwinding lines. Ferroelectrics. 1988;84:25–52.
  • Bahr CH, Heppke G. Optical and dielectric investigations on the electroclinic effect exhibited by a ferroelectric liquid crystal with high spontaneous polarization. Liq Cryst. 1987;2:825–831.
  • Cole RH, Cole SK. Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys. 1941;9:341–351.
  • Hikmet RAM, Boots HMJ, Michielsen M. Ferroelectric liquid crystal gels network stabilized ferroelectric displays. Liq Cryst. 1995;19:65–76.
  • Kundu S, Nayek P, Ray T, et al. Influence of network stabilization on the dielectric and electrooptical properties of ferroelectric liquid crystal FELIX-M4851/100. Jpn J Appl Phys. 2009;48:061501.
  • Manohar R, Yadav SP, Pandey KK, et al. Comparative study of dielectric and electro-optical properties of pure and polymer ferroelectric liquid crystal composites. J Polym Res. 2011;18:435–441.
  • Cherfi Y, Hemine J, Douali R, et al. Linear and non-linear dielectric properties of a short-pitch ferroelectric liquid crystal stabilized by a polymer network. Eur Phys J E. 2010;33:335–342.
  • Carlsson T, Zeks B, Filipic C, et al. Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*-smectic-A phase transition. Phys Rev A. 1990;42:877–889.
  • Andersson G, Dahl I, Kuczynski W, et al. The soft-mode ferroelectric effect. Ferroelectrics. 1988;84:285–315.
  • Petit M, Hemine J, Daoudi A, et al. Effect of the network density on dynamics of the soft and the Goldstone modes in short-pitch ferroelectric liquid crystals stabilized by an anisotropic polymer network. Phys Rev E. 2009;79:031705.
  • Rozanski SA, Thoen J. Collective dynamic modes in ferroelectric liquid crystal-aerosil dispersions. Liq Cryst. 2005;32(3):331–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.