425
Views
5
CrossRef citations to date
0
Altmetric
Article

Effect of the position of cyano group in α-cyano-functionalised diarylethene chiral fluorescent photoswitches on phototunable behaviours of cholesteric liquid crystals

, , , &
Pages 1247-1256 | Received 25 Sep 2020, Accepted 21 Nov 2020, Published online: 11 Dec 2020

References

  • García-López V, Liu DD, Tour JM. Light-activated organic molecular motors and their applications. Chem Rev. 2020;120(1):79–124.
  • Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev. 2018;47:1044–1097.
  • Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116(24):15089–15166.
  • Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114(24):12174–12277.
  • Zhang JJ, Tian H. The endeavor of diarylethenes: new structures, high performance, and bright future. Adv Opt Mater. 2018;6(6):1701278.
  • Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020;32:1905966.
  • de Oliveira WA, Mezalira DZ, Westphal E. Acylhydrazones liquid crystals: effect of structure over thermal behaviour and molecular switching. Liq Cryst. 2020. DOI:https://doi.org/10.1080/02678292.2020.1766135
  • Wang M, Han Y, Guo LX, et al. Photocontrol of helix handedness in curled liquid crystal elastomers. Liq Cryst. 2019;46(8):1231–1240.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist-bend nematic-nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dinner. J Am Chem Soc. 2016;138(16):5283–5289.
  • Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40(8):4422–4437.
  • Szymański W, Beierle JM, Kistemaker HAV, et al. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113(8):6114–6178.
  • Zhang ZW, Li JT, Wei WY, et al. A luminescent dicyanodistyrylbenzene-based liquid crystal polymer network for photochemically patterned photonic composite film. Chinese J Polym Sci. 2018;36(6):776–782.
  • He YR, Li JT, Li J, et al. Photoinduced dual-mode luminescent patterns in dicyanostilbene-based liquid crystal polymer films for anticounterfeiting application. ACS Appl Polym Mater. 2019;1(4):746–754.
  • Li J, Tian M, Xu H, et al. Photoswitchable fluorescent liquid crystal nanoparticles and their inkjet-printed patterns for information encrypting and anti-counterfeiting. Part Part Syst Charact. 2019;36(10):1900346.
  • Feringa BL, van Delden RA, Koumura N, et al. Chiroptical molecular switches. Chem Rev. 2000;100(5):1789–1816.
  • Canary JW. Redox-triggered chiroptical molecular switches. Chem Soc Rev. 2009;38(3):747–756.
  • Bisoyi HK, Li Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc Chem Res. 2014;47(10):3184–3195.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24(15):1926–1945.
  • Ma J, Xuan L. Towards nanoscale molecular switch-based liquid crystal displays. Displays. 2013;34(4):293–300.
  • Crooker PP, Kitzerow H-S, Bahr C, editors. Chirality in liquid crystals. New York: Springer; 2001. chap. 7, p. 186–222.
  • Eelkema R, Feringa BL. Amplification of chirality in liquid crystals. Org Biomol Chem. 2006;4(20):3729–3745.
  • Kim Y, Tamaoki N. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotoChem. 2019;3(6):284–303.
  • Pieraccini S, Masiero S, Spada GP, et al. A new axially-chiral photochemical switch. Chem Commun. 2003;5(5):598–599.
  • Zheng Z, Li Y, Bisoyi HK, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 2016;53(7594):352–356.
  • Fu DW, Li JT, Wei J, et al. Effects of terminal chain length in hydrogen-bonded chiral switches on phototunable behavior of chiral nematic liquid crystals: helicity inversion and phase transition. Soft Matter. 2015;11(15):3034–3045.
  • Jin OY, Fu DW, Ge YX, et al. Hydrogen-bonded chiral molecular switches: photo- and thermally-reversible switchable full range color in the self-organized helical superstructure. New J Chem. 2015;39(1):254–261.
  • Xie Y, Fu DW, Jin OY, et al. Photoswitchable molecular switches featuring both axial and tetrahedral chirality. J Mater Chem C. 2013;1:7346.
  • Qin L, Gu W, Wei J, et al. Piecewise phototuning of self-organized helical superstructures. Adv Mater. 2018;30(8):1704941.
  • van Delden RA, Koumura N, Harada N, et al. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc Natl Acad Sci. 2002;99(8):4945–4949.
  • Sun J, Lan R, Gao Y, et al. Stimuli‐directed dynamic reconfiguration in self‐organized helical superstructures enabled by chemical kinetics of chiral molecular motors. Adv Sci. 2018;5(2):1700613.
  • Li YN, Urbas A, Li Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J Am Chem Soc. 2012;134(23):9573–9576.
  • Li YN, Xue CM, Wang M, et al. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures. Angew Chem Int Ed. 2013;52(51):13703–13707.
  • Hayasaka H, Miyashita T, Nakayama M, et al. Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants. J Am Chem Soc. 2012;134:3758–3765.
  • Li JT, Bisoyi HK, Lin SY, et al. 1,2-Dithienyldicyanoethene-based, visible-light-driven, chiral fluorescent molecular switch: rewritable multimodal photonic devices. Angew Chem Int Ed. 2019;58(45):16052–16056.
  • Lin SY, Li JT, Bisoyi HK, et al. Dicyanodistyrylthiophene-based emissive chiral photoswitches: effect of the position of the cyano group on reversible photoisomerization and fatigue resistance. ChemPhotoChem. 2019;3(6):480–486.
  • Qiao JH, Lin SY, Li JT, et al. Reversible chirality inversion of circularly polarized luminescence in a photo-invertible helical cholesteric superstructure. Chem Commun. 2019;55(97):14590–14593.
  • Li JT, Zhang ZW, Tian JJ, et al. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: an emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv Opt Mater. 2017;5(8):1700014.
  • Lin SY, Sun H, Qiao JH, et al. Phototuning energy transfer in self-organized luminescent helical superstructures for photonic applications. Adv Opt Mater. 2020;8(11):2000107.
  • Tian JJ, He YR, Li JT, et al. Fast, real-time, in situ monitoring of solar ultraviolet radiation using sunlight-driven photoresponsive liquid crystals. Adv Opt Mater. 2018;6(6):1701337.
  • Lin SY, Gutierrez-Cuevas KG, Zhang XF, et al. Fluorescent photochromic α-cyanodiarylethene molecular switches: an emerging and promising class of functional diarylethene. Adv Funct Mater. 2020;30:2007957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.