216
Views
0
CrossRef citations to date
0
Altmetric
Article

Phase behaviour of alkynyl-terminated bicyclo[3.3.0]octa-1,4-diene ligands: a serendipitous discovery of novel calamitic liquid crystals

, &
Pages 1575-1580 | Received 21 Dec 2020, Accepted 13 Feb 2021, Published online: 29 Mar 2021

References

  • Nagamoto M, Nishimura T. Asymmetric transformations under Iridium/Chiral diene catalysis. ACS Catal. 2017;7:833–847.
  • Feng CG, Xu MH, Lin GQ. Development of bicyclo[3.3.0]octadiene- or dicyclopentadiene-based chiral diene ligands for transition-metal-catalyzed reactions. Synlett. 2011;10:1345–1356.
  • Helbig S, Sauer S, Cramer N, et al. Chiral bicyclo[3.3.0]octa-2,5-dienes as steering ligands in substrate-dependent rhodium-catalyzed 1,4-addition of arylboronic acids to enones. Adv Synth Catal. 2007;349(14–15):2331–2337.
  • Wang ZQ, Feng CG, Xu MH, et al. Design of C2-symmetric tetrahydropentalenes as new chiral diene ligands for highly enantioselective Rh-catalyzed arylation of N-tosylarylimines with arylboronic acids. J Am Chem Soc. 2007;129:5336–5337.
  • Helbig S, Axenov KV, Tussetschläger S, et al. Application of chiral tetrahydropentalene ligands in rhodium-catalyzed 1,4-addition of (E)-2-phenylethenyl- and (Z)-propenylboronic acids to enones. Tetrahedron Lett. 2012;53:3506–3509.
  • Mühlhäuser T, Savin A, Frey W, et al. Role of regioisomeric bicyclo[3.3.0]octa-2,5-diene ligands in Rh catalysis: synthesis, structural analysis, theoretical study, and application in asymmetric 1,2- and 1,4-additions. J Org Chem. 2017;82(24):13468–13480. .
  • Pecchioli T, Christmann M. Synthesis of highly enantioenriched propelladienes and their application as ligands in asymmetric Rh-catalyzed 1,4-additions. Org Lett. 2018;20(17):5256–5259.
  • Deimling M, Kirchhof M, Schwager B, et al. Asymmetric catalysis in liquid confinement: probing the performance of novel chiral rhodium–diene complexes in microemulsions and conventional solvents. Chem Eur J. 2019;25(40):9464–9475. .
  • Deimling M, Zens A, Park N, et al. Adventures and detours in the synthesis of hydropentalenes. Synlett. 2020;31:A–U.
  • Stackhouse PJ, Hird M. Influence of acetylene-containing peripheral chains on the mesomorphic properties of triphenylene-based liquid crystals. Liq Cryst. 2009;36(9):953–965.
  • Han B, Hu P, Wang BQ, et al. Triphenylene discotic liquid crystal trimers synthesized by Co2(CO)8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition. Beilstein J Org Chem. 2013;9:2852–2861.
  • Petrzilka M. Apolar acetylenic liquid crystals. Mol Cryst Liq Cryst. 1984;111(3–4):347–358.
  • Zhu S, Zhu Y, Chigan J, et al. The effect of terminal epoxy modification on the mesomorphic and thermal stability of biphenyl ester liquid crystals. Liq Cryst. 2019;46(15):2149–2158. .
  • Lee M, Nguyen M, Brandt C, et al. Catalytic hydroalkylation of allenes. Angew Chem Int Ed. 2017;56(49):15703–15707. .
  • Sasanuma Y, Sugita K. The attractive Gauche effect of ethylene oxides. Polym J. 2006;38(9):983–988.
  • Chan TN, Lu Z, Yam WS, et al. Non-symmetric liquid crystal dimers containing an isoflavone moiety. Liq Cryst. 2012;39:393–402.
  • Chem3D. Version 18.0.0.231, PerkinElmer Informatics, Inc. Optimization via MM2 forcefields.
  • de Vries A. The description of the smectic A and C phases and the smectic A–C phase transition of TCOOB with a diffuse‐cone model. J Chem Phys. 1979;71:25–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.