256
Views
2
CrossRef citations to date
0
Altmetric
Article

Optical spectra of composite cholesteric elastomers doped with metallic nano-ellipsoids

ORCID Icon &
Pages 1-16 | Received 17 Feb 2021, Accepted 08 Jun 2021, Published online: 19 Jul 2021

References

  • Finkelmann H, Kock HJ, Rehage G. Investigations on liquid crystalline polysiloxanes, 5. Orientation of LC-elastomers by mechanical forces. Makromol Chem, Rapid Commun. 1984;5:287–293.
  • Belyakov VA, Dmitrienko Vladimir E, Orlov VP. Optics of cholesteric liquid crystals. Sov Phys Usp. 1979;22:64.
  • Gevorgyan AH. Optics of helical periodic media in the presence of a wave modulating parameters of the medium: i. New regions of diffraction reflection. Opt Spectrosc. 2003;95:70–79.
  • Gevorgyan AH. Light absorption suppression in cholesteric liquid crystals with magneto-optical activity. J Mol Liq. 2021;335:116289.
  • Mackay TG, Vepachedu V, Lakhtakia A Bragg supermirrors and polarization-state-dependent attenuation and amplification. In: Mackay TG, Lakhtakia A, editors. Proceedings SPIE Nanoscience+ Engineering; 2018 Aug 19–23; San Diego, CA. Bellingham (WA): SPIEDigital Library;2018.
  • Castles F, Qasim MM, HunG JMC, et al. Stretchable liquid crystal blue phase gels. Nat Mat. 2014;13:817.
  • Fergason JL. Cholesteric structure-1: optical properties. Mol Cryst. 1966;1:293–307.
  • Finkelmann H, Palffy-Muhoray P, Taheri B, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13:1069–1072.
  • Faryad M, Lakhtakia A. The circular Bragg phenomenon. Adv Opt Photon. 2014;6:225–292.
  • Ohm C, Brehmer M, Zentel R. Applications of liquid crystalline elastomers. In: de Jeu WH, editor. Liquid crystal elastomers: materials and applications. Berlin: Springer; 2012:49.
  • Schmidtke J, Kniesel S, Finkelmann H. Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules. 2005;38:1357.
  • Rivera M, Reyes JA. Nested optical band gaps for a cholesteric elastomer slab under stress. Appl Phys Lett. 2007;90:023513.
  • Varanytsia A, Guo T, Palffy-Muhoray P. Small footprint cholesteric liquid crystal laser. Appl Opt. 2019;58:739.
  • Avendaño CG, Reyes JA. Mechanically tuned defect-mode multiplet for cholesteric photonic elastomers. Phys Rev E. 2012;85:021702.
  • Reyes JA, Lakhtakia A. Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material. Opt Commun. 2006;259:164–173.
  • Oraevskii AN, Protsenko IE. High refractive index and other optical properties of heterogeneous media. J Exp Theor Phys Lett. 2000;72:445–448.
  • Vetrov SY, Bikbaev RG and Timofeev IV. Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion. J Exp Theor Phys. 2013;117:988–998.
  • Lee JCW, Chan C. Chiral microstructures (spirals) fabrication by holographic lithography. Opt Express. 2005;13:8083.
  • Hrudey PCP, Szeto B, Brett MJ. Strong circular Bragg phenomena in self-ordered porous helical nanorod arrays of Alq3. Appl Phys Lett. 2006;88:251106.
  • Thiel M, Decker M, Wegener M, et al. Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv Mater. 2007;19:207–210.
  • Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.
  • Moroz A. Electron mean-free path in metal-coated nanowires. J Opt Soc Am. 2011;28:1130–1138.
  • Figueiredo NM, Cavaleiro A. Dielectric properties of shape-distributed ellipsoidal particle systems. Plasmonics. 2020;15:379–397.
  • Elim HI, Yang J, Lee JY. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl Phys Lett. 2006;88:83107–83109.
  • Pelton M, Liu M, Park S, et al. resonant optical scattering from single gold nanorods: largenonlinearities and plasmon saturation. Phys Rev B. 2006;73:155419.
  • Li J, Liu S, Liu Y, et al. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods. Appl Phys Lett. 2010;96:263103.
  • Hernández JC, Reyes JA. Optical band gap in a cholesteric elastomer doped by metallic nanospheres. Phys Rev E. 2017;96:062701.
  • Reyes G, Reyes JA. Omnidirectional optical spectra for a nanocomposite cholesteric elastomer. J Phys: Condens Matter. 2019;31:325701.
  • Reyes G, Reyes JA. Reflection band gap for a transversely stretched composite cholesteric elastomer. J Opt. 2019;21:125102.
  • Warner M, Terentjev EM. Liquid crystal elastomers. Oxford: Clarendon Press; 2003.
  • Vadim AM. A tutorial on Maxwell Garnett approximation. I Introduction. J Opt Soc Am A. 2016;33:2237–2255.
  • Maxwell Garnett JC. Colours in metal glasses and in metallic films. Philos Trans R Soc A. 1904;203:385–420.
  • Lakhtakia A, Michel B, Weiglhofer WS. Journal of physics D: applied physics the role of anisotropy in the Maxwell Garnett and Bruggeman formalisms for uniaxial particulate composite media. J Phys D: Appl Phys. 1997;30:230.
  • Sihvola AH. Metamaterials and depolarization factors. Prog Electromagn Res. 2005;51:65–82.
  • Levy O, Cherkaev E. Effective medium approximations for anisotropic composites with arbitrary component orientation. J Appl Phys. 2013;114:164102.
  • Mendoza LJ, Scaffardi LB, Schinka D, et al. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles. J Appl Phys. 2014;116:233105.
  • Kreibig U, Genzel L. Optical absorption of small metallic particles. Surf Sci. 1985;156:678–700.
  • Lakhtakia A, Messier R. Sculptured thin films: nanoengineered morphology and optics. Belingham (WA): SPIE, the international society for optical engineering. 2005.
  • Reyes G, Reyes JA. Multidirectional switching behavior by transversely stretching a composite cholesteric elastomer. Phys Rev E. 2020;102:032702.
  • Cicuta P, Tajbakhsh AR, Terentjev EM. Evolution of photonic structure on deformation of cholesteric elastomers. Phys Rev E. 2002;65:051704.
  • Rakić AD, Majewski ML, Elazar JM, et al. properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 1998;37:5271–5283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.