633
Views
8
CrossRef citations to date
0
Altmetric
Article

Highly sensitive and transparent flexible temperature sensor based on nematic liquid crystals

, ORCID Icon, , , , , , & show all
Pages 372-379 | Received 26 May 2021, Accepted 17 Aug 2021, Published online: 25 Aug 2021

References

  • Li Y, Steven P, Xuan HF, et al. Flexible multi‐material fibers for distributed pressure and temperature sensing. Adv Funct Mater. 2020;30(9):1908915.
  • Chen A, Chen HY, Chen C. Use of temperature and humidity sensors to determine moisture content of oolong tea. Sensors. 2020;14(8):15593–15609.
  • Shin J, Jeong B, Kim J, et al. Wearable temperature sensors: sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater. 2019;32(2):2070014.
  • Zhao JX, Zhang Y, Huang YN, et al. 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv Sci. 2018;5(11):1801114.
  • Pang Q, Lou D, Li SJ, et al. Smart flexible electronics‐integrated wound dressing for real‐time monitoring and on‐demand treatment of infected wounds. Adv Sci. 2020;7(6):1902673.
  • Han Y, Pacheco K, Cees WM, et al. Optical monitoring of gases with cholesteric liquid crystals. J Am Chem Soc. 2010;132(9):2961–2967.
  • Moreira MF, Carvalho ICS, Cao W, et al. Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor. Appl Phys Lett. 2004;85(14):2691–2693.
  • Zhu C, Gary MH. A new liquid-crystal-based fiber-optic temperature sensor. Appl Spectrosc. 2016;43(8):1333–1336.
  • Zhang H, Shang JY, Liu XJ, et al. High-sensitivity fiber liquid crystals temperature sensor with tiny size and simple tapered structure. Chin Opt Lett. 2020;18(10):101202.
  • Marcos C, Pena JMS, Torres JC, et al. Temperature-frequency converter using a liquid crystal cell as a sensing element. Sensors. 2012;12(3):3204–3214.
  • Algorri J, Urruchi V, Bennis N, et al. A novel high-sensitivity, low-power, liquid crystal temperature sensor. Sensors. 2014;14(4):6571–6583.
  • Torres J, Braulio GC, Isabel P, et al. Wireless temperature sensor based on a nematic liquid crystal cell as variable capacitance. Sensors. 2018;8(10):3436.
  • Jing S, Gao N, Tang ZY, et al. Capacitive-type liquid crystal temperature sensor. Liq Cryst. 2021;48(8):1103–1110.
  • Li HJ, Huang JZ, Yu Y, et al. High-precision temperature measurement based on weak measurement using nematic liquid crystals. Appl Phys Lett. 2018;112(23):231901.
  • Ma MJ, Chen HL, Li SG, et al. Highly sensitive temperature sensor based on Sagnac interferometer with liquid crystal photonic crystal fibers. Optik. 2019;179:665–671.
  • Guo Y, Li JS, Li SG, et al. Amphibious sensor of temperature and refractive index based on D-shaped photonic crystal fibre filled with liquid crystal. Liq Cryst. 2020;47(6):882–894.
  • Du C, Wang Q, Zhao Y. Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sens Actuators A-Phys. 2018;278:78–84.
  • Chen XX, Ren ZY, Guo H, et al. Self-powered flexible and transparent smart patch for temperature sensing. Appl Phys Lett. 2020;116(4):043902.
  • Yu CJ, Wang ZY, Yu HY, et al. A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates. Appl Phys Lett. 2009;95(14):141912.
  • Sohail FS, Muhammad MH. Multisensory graphene-skin for harsh-environment applications. Appl Phys Lett. 2020;117(7):074101.
  • Wang LQ, Zhu R, Li GZ. Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl Mater Interfaces. 2020;12(1):1953–1961.
  • Zhang FJ, Zang YP, Huang DZ, et al. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun. 2015;6(1):8356.
  • Mason BP, Whittaker M, Hemmer J, et al. A temperature-mapping molecular sensor for polyurethane-based elastomers. Appl Phys Lett. 2016;108(4):041906.
  • Rim YS, Bae SH, Chen HJ, et al. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater. 2016;28(22):4415–4440.
  • Veeralingam S, Badhulika S. 2D-SnSe2 nanoflakes on paper with 1D - NiO gate insulator based MISFET as multifunctional NIR photo switch and flexible temperature sensor. Mat Sci Semicond Proc. 2020;105:104738.
  • Nakata S, Arie T, Akita S, et al. Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2017;2(3):443–448.
  • Park J, Kim M, Lee Y, et al. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv. 2015;1(9):e1500661.
  • Yamada S, Toshiyoshi H. A temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces. 2020;12(32):36449–36457.
  • Liu QX, Liu ZG, Li CG, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv Sci. 2020;7(10):2000348.
  • Tsao LC, Shih WP, Chang C, et al. Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors. 2010;10(4):3597–3610.
  • Liu G, Tan Q, Kou H, et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors. 2018;18(5):1400.
  • Dankoco MD, Tesfay GY, Benevent E, et al. Temperature sensor realized by inkjet printing process on flexible substrate. Mater Sci Eng, B. 2016;205(5):1–5.
  • Oh JH, Hong SY, Park H, et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl Mater Interfaces. 2018;10(8):7263–7270.
  • You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science. 2020;370(6519):961–965.
  • Wu ST, Wu CS. Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals. Phys Rev A. 1990;42(4):2219–2227.
  • Rao L, Gauza S, Wu ST. Low temperature effects on the response time of liquid crystal displays. Appl Phys Lett. 2009;94(7):071112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.