449
Views
9
CrossRef citations to date
0
Altmetric
Article

Unsymmetrical Coumarin based dimeric liquid crystals: Synthesis, Characterization, Mesomorphic investigation, Photoluminescence and Thermal conductivity

ORCID Icon &
Pages 354-365 | Received 07 Jun 2021, Accepted 17 Aug 2021, Published online: 11 Oct 2021

References

  • Zhu JJ, Jiang JG. Pharmacological and nutritional effects of natural coumarins and their structure-activity relationships. Mol Nutr Food Res. 2018;62(14):1701073.
  • Borges F, Roleira F, Milhazes N, et al. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem. 2005;12(8):887–916.
  • Zang Y. Pharmacological activities of coumarin compounds in licorice: a review. Nat Prod Commun. 2020;15(9):1–17.
  • Cao D, Liu Z, Verwilst P, et al. Coumarin-based small-molecule fluorescent chemosensors. Chem Rev. 2019;119(18):10403–10519.
  • Annunziata F, Pinna C, Dallavalle S, et al. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci. 2020;21(31):4618.
  • Stefanachi A, Leonetti F, Pisani L, et al. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules. 2018;23(2):250.
  • Hoult JRS, Payá M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol Vasc Syst. 1996;27(4):713–722
  • Zhang ZR, Leung WN, Cheung HY, et al. Osthole: a review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid Based Complement Altern Med. 2015;1–10.
  • Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev. 2006;5(2–3):293–308.
  • Zhou S, Jia J, Gao J, et al. The one-pot synthesis and fluorimetric study of 3-(2′-benzothiazolyl)coumarins. Dye Pigment. 2010;86(2):123–128.
  • Esnal I, Duran-Sampedro G, Agarrabeitia AR, et al. Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Phys Chem Chem Phys. 2015;17(12):8239–8247.
  • Serrano JL, Concellon A, Termine R, et al. High charge mobility and light-harvesting in discotic nematic dendrimers prepared via “click” chemistry. J Mater Chem C. 2019;7(10):2911–2918.
  • Ahn S, Cha YB, Kim M, et al. Synthesis, characterization, and electroluminescence properties of a donor–acceptor type molecule for highly efficient non-doped green organic light-emitting diodes. Synth Met. 2015;199:8–13.
  • Leandri V, Gardner JM, Jonsson M. Coumarin as a quantitative probe for hydroxyl radical formation in heterogeneous photocatalysis. J Phys Chem C. 2019;123(11):6667–6674.
  • Deng G, Xu H, Kuang L, et al., Novel nonlinear optical chromophores based on coumarin: synthesis and properties studies. Opt Mater Amst. 2019;88:218–222.
  • Alderete J, Belmar J, Parra M, et al. Esters derived from 7-decanoyloxychromone-3-carboxylic acid: synthesis and mesomorphic properties. Liq Cryst. 2003;30(11):1319–1325.
  • Dave JS, Menon MR, Patel PR. Synthesis and mesomorphic characterization of azoesters with a coumarin ring. Liq Cryst. 2002;29(4):543–549.
  • Imrie CT, Henderson PA. Liquid crystal dimers and oligomers. Curr Opin Colloid Interface Sci. 2002;7(5–6):298–311.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36(12):2096–2124.
  • Imrie CT. Non-symmetric liquid crystal dimers: how to make molecules intercalate. Liq Cryst. 2006;33(11–12):1449–1454.
  • Imrie CT, Luckhurst GR. In Handbook of Liquid Crystal. Demus D, Goodby J,Gray G W, Spiess H-W, Vill V. Eds; Wiley-VCH: 1998; Vol. 2B, pp. 801–834.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9(1):228.
  • Salamonczyk M, Vaupotic N, Pociecha D, et al. Multi-level chirality in liquid crystals formed by achiral molecules. Nat Commun. 2019;10(1):1922.
  • Walker R, Majewska M, Pociecha D, et al. Twist-bend nematic glasses: the synthesis and characterisation of pyrene-based nonsymmetric dimers. Chemphyschem. 2021;22(5):461–470.
  • Walker R, Pociecha D, Storey JMD, et al. The chiral twist-bend nematic phase (N*(TB)). Chem Eur J. 2019;54(25):13329–13335.
  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: a twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Commun. 2018;54(27):3383–3386.
  • Walker R, Pociecha D, Strachan GJ, et al. Molecular curvature, specific intermolecular interactions and the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-6-(4-alkylanilinebenzylidene-4-oxy)hexanes (CB6O.m). Soft Matter. 2019;15(15):3188–3197.
  • Seou C-K, Ha S-T, Win Y-F, et al. Synthesis and phase transition behaviours of new non- symmetric liquid crystal dimers. Liq Cryst. 2014;41(11):1627–1634.
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84(3):031704.
  • Borshch V, Kim Y-K, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4(1):1–8.
  • Imrie CT, Henderson PA, Yeap G-Y. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36(6–7):755–777.
  • Imrie CT, Karasz FE, Attard GS. Effect of backbone flexibility on the transitional properties of side-chain liquid-crystalline polymers. Macromolecules. 1993;26(15):3803–3810.
  • Walker R, Pociecha D, Storey JMD, et al. Remarkable smectic phase behaviour in odd-membered liquid crystal dimers: the CT6O.m series. J Mater Chem C. 2021;9(15):5167–5173.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natl Acad Sci U S A. 2016;113(46):12925–12928.
  • Xiang J, Li YN, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018.
  • Mohammad AKT, Al-Mohammedi MH, Ghdhayeb MZ, et al. Coumarin dimers of benzidine and phenylenediamine cores: synthesis, characterisation and mesomorphic properties. Liq Cryst. 2019;47(3):414–422.
  • Mohammad AKT, Al-Mohammed MH, Srinivasa HT, et al. Coumarin substituted symmetric diaminopyridine molecules: synthesis, mesomorphic characterizations and DFT studies. J Mol Liq. 2020;314:113782.
  • Mohammad AKT, Alwari RY, Srinivasa HT, et al. Preparation, spectral and thermal properties of new isoflavone derivatives: mesomorphic properties and DFT studies. Liq Cryst. 2018;45:1699–1710.
  • Mohammad AKT, Yeap G-Y, Osman H. Synthesis and mesomorphic behavior of new mesogenic compounds possessing a biphenyl ester moiety with a 6- amino-1,3- dimethyluracil. Mol Cryst Liq Cryst. 2014;590(1):130–139.
  • Mohammad AKT, Srinivasa HT, Hariprasad S, et al. Novel oxazepinedione-derived symmetric dimers: synthesis and mesophase characterisation of seven- membered heterocyclic compounds. Liq Cryst. 2016;43(12):1739–1747.
  • Yelamaggad CV, Bonde NL, Achalkumar AS, et al. Frustrated liquid crystals: synthesis and mesomorphic behavior of unsymmetrical dimers possessing chiral and fluorescent entities. Chem Mater. 2007;19(10):2463–2472.
  • Li M, Wu Z, Tan J. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method. Appl Energy. 2012;92:456–461.
  • Jo L, Choi H, Lee JY. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository. Ann Nucl Energy. 2016;94:848–855.
  • Cruickshank E, Salamonczyk M, Pociecha D, et al. Sulfur-linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46(10):1595–1609.
  • Luckhurst GR. Liquid crystals: a chemical physicist’s view. Liq Cryst. 2005;32(11–12):1335–1364.
  • Yeap G-Y, Osman F, Imrie CT. Non-symmetric dimers: effects of varying the mesogenic linking unit and terminal substituent. Liq Cryst. 2015;42(4):543–554.
  • Ahmed HA, Hagar ME, Saad GR. Impact of the proportionation of dialkoxy chain length on the mesophase behaviour of Schiff base/ester liquid crystals; experimental and theoretical study. Liq Cryst. 2019;46(11):1611–1620.
  • Saad GR, Ahmed NHS, Fahmi A A, et al. Influence of lateral methyl and terminal substituents on the mesophase behaviour of four rings azo-ester liquid crystal compounds. Liq Cryst. 2019;46(8):1285–1297.
  • Mohammad AKT, Srinivasa HT, Suresh H, et al. New mesogenic compounds possessing a biphenyl ester and ether moiety comprising 1,3-dimethylbarbituric acid: synthesis, characterisation and mesomorphic studies. Liq Cryst. 2016;43(9):1174–1183.
  • Durgapal S, Soni R, Soman S, et al. Synthesis and mesomorphic properties of coumarin derivatives with chalcone and imine linkages. J Mol Liq. 2019;297:111920.
  • Mohammad AKT, Srinivasa HT, Sie-Tiong H, et al. Synthesis and comparative studies of phase transition behaviour of new dimeric liquid crystals consisting of dimethyluracil and biphenyl cores. J Mol Liq. 2016;219:765–772.
  • Mohammad AKT, Srinivasa HT, Hariprasad S, et al. Enhanced liquid crystal properties in symmetric ethers containing the oxazepine core: synthesis and characterization of seven member heterocyclic dimers. Tetrahedron. 2016;72(27–28):3948–3957.
  • Pathak G, Hegde G, Prasad V. Octadecylamine-capped CdSe/ZnS quantum dot dispersed cholesteric liquid crystal for potential display application: investigation on photoluminescence and UV absorbance. Liq Cryst. 2020;48(4):579–587.
  • Shkir M, Irfan A, AlFaify S, et al. Linear, second and third order nonlinear optical properties of novel noncentrosymmetric donor-acceptor configure chalcone derivatives: a dual approach study. Optik. 2019;199:163354.
  • Vinaya PP, Prabhu AN, Subrahmanya Bhat K, et al. Synthesis, growth and characterization of a long-chain π-conjugation based methoxy chalcone derivative single crystal; a third order nonlinear optical material for optical limiting applications. Opt Mater. 2019;89:419–429.
  • Zhang H, Luo Q, Mao Y, et al. Synthesis and characterization of coumarin-biphenyl derivatives as organic luminescent materials. J Photochem Photobiol A Chem. 2017;346:10–16.
  • Jebapriya JC, Jonathan DR, Kirupavathy SS, et al. Growth and characterization of a cyclohexanone based chalcone crystal 2(E)-(4-N,N-dimethylaminobenzylidene)-5-methylcyclohexanone for nonlinear optical applications. Opt Mater. 2020;107:110035.
  • Lin L, Rong M, Luo F, et al. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC - Trends Anal Chem. 2014;54:83–102.
  • Bonifácio VD, Correia VG, Pinho MG, et al. Blue emission of carbamic acid oligooxazoline biotags. Mater Lett. 2012;81:205–208.
  • Thaker BT, Patel PH, Vansadiya AD, et al. Substitution effects on the liquid crystalline properties of thermotropic liquid crystals containing Schiff base chalcone linkages. Mol Cryst Liq Cryst. 2009;515(1):135–147.
  • Wang C, Lu S, Yu X, et al. Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons. Chinese Phys. 2019;28(1):016501
  • Kim K, Ju H, Kim J. Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite. Compos Sci Technol. 2017;141:1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.