484
Views
8
CrossRef citations to date
0
Altmetric
Article

Impact of dispersed graphene oxide on thermodynamical, optical, electro optical and dielectric properties of nematic liquid crystal

, , & ORCID Icon
Pages 456-474 | Received 07 Jul 2021, Accepted 30 Aug 2021, Published online: 27 Sep 2021

References

  • Zakri C, Blanc C, Grelet E, et al. Liquid crystals of carbon nanotubes and graphene. Phil Trans R Soc A. 2013;371:1–15.
  • Blake P, Brimicombe PD, Nair RR, et al. Graphene-based liquid crystal device. Nano Lett. 2008;8:1704–1708.
  • Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech. 2008;3:270–274.
  • Loh KP, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2:1015–1024.
  • Demus D, Goodby JW, Gray GW, et al. Hand book of liquid crystals. Vol. 1, Hoboken, NJ: Wiley-VCH Verlag GmbH; 1998.
  • Hisakado Y, Kikuchi H, Nagamura T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv Mater. 2005;17:96–98.
  • Gennes PD, Prost J. The physics of liquid crystals. New York (NY): Oxford University Press; 1995.
  • Yadav S, Malik P, Khushboo, et al. Electro-optical, dielectric and optical properties of graphene oxide dispersed nematic liquid crystal composites. Liq Cryst. 2020;47:984–993.
  • Choa MJ, Parka HG, Jeonga HC, et al. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst. 2014;41:761–766.
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7:1876–1902.
  • Singh A, Sinsinbar G, Choudhary M, et al. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators B Chem. 2013;185:675–684.
  • Pavlidis IV, Patila M, Bornscheuer UT, et al. Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol. 2014;32:312–320.
  • Yang K, Feng L, Hong H, et al. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8:2392–2403.
  • Wang Y, Li Z, Wang J, et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–212.
  • Gao S, Zhang L, Wang G, et al. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials. 2016;79:36–45.
  • Wu SY, An SS, Home J. Current applications of graphene oxide in nanomedicine. Int J Nanomed. 2015;10:9–24.
  • Zhong L, Yun K. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties. Int J Nanomed. 2015;10:79–92.
  • Shen Y, Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Appl Sci. 2019;9:2512.
  • Skarabot M, Ryzhkova AV, Muševič I. Interactions of single nanoparticles in nematic liquid crystal. J Mol Liq. 2018;267:384–389.
  • Chang C, Zhao Y, Liu Y, et al. Liquid crystallinity of carbon nanotubes. RSC Adv. 2018;8:15780.
  • Prasad SK, Sandhya KL, Nair G, et al. Electrical conductivity and dielectric constant measurements of liquid crystal–gold nanoparticle composites. Liq Cryst. 2006;33:1121–1125.
  • Zhang G, Chen X, Zhao J, et al. Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal. Mat Lett. 2006;60:2889–2892.
  • Zhao D, Zhou W, Cui X, et al. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv Mater. 2011;23:5779–5784.
  • Lisetski L, Soskin M, Lebovka N. Carbon nanotubes in liquid crystals: fundamental properties and applications. In: Bulavin L, Lebovka N, editors. Physics of liquid matter: modern problems. Switzerland: Springer Nature; 2020. p. 243–297.
  • Lee WK, Choi YS, Kang YG, et al. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv Funct Mater. 2011;21:3843–3850.
  • Lynch MD, Patrick DL. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002;2:1197–1201.
  • Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep. 2005;49:89–112.
  • Lagerwall J, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898.
  • Yadav SP, Singh S. Carbon nanotube dispersion in nematic liquid crystals: an overview. Prog Mater Sci. 2016;80:38–76.
  • Geng X, Niu L, Xing Z, et al. Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv Mater. 2010;22:638–642.
  • Sun S, Gao L, Liu Y. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl Phys Lett. 2010;96:083113.
  • Lee WK, Hwang SJ, Cho MJ, et al. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale. 2013;5:193–199.
  • Kramer IJ, Sargent EH. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev. 2014;114:863–882.
  • Kumar A, Silotia P, Biradar AM. Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots. Appl Phys Lett. 2011;99:072902.
  • Mishra M, Dabrowski RS, Vij JK, et al. Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liq Cryst. 2015;42:1580–1590.
  • Sridevi S, Prasad SK, Nair GG, et al. Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system. Appl Phys Lett. 2010;97:151910–151913.
  • Verma R, Dhar R, Agrawal VK, et al. Electron beam irradiation-induced transformations in the electrical properties of 4ʹ-octyl-4-cyanobiphenyl (8CB). Liq Cryst. 2009;36:1003–1014.
  • User’s manual, NETZSCH DSC model-DSC-200-F3-Maia NETZSCH Geratebau GmBh. Wittelsbacherstrabe.
  • Verma R, Mishra M, Dhar R, et al. Enhancement of electrical conductivity, director relaxation frequency and slope of electro-optical characteristics in the composites of single-walled carbon nanotubes and a strongly polar nematic liquid crystal. Liq Cryst. 2017;44:544–556.
  • Rathgeber C, Miro L, Cabeza LF, et al. Measurement of enthalpy curves of phase change materials via DSC and T-History: when are both methods needed to estimate the behaviour of the bulk material in applications. Thermochim Acta. 2014;596:79–88.
  • Singh UB, Dhar R, Dabrowski RS, et al. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq Cryst. 2013;40:774–782.
  • Yadav N, Dabrowski RS, Dhar R. Effect of alumina nanoparticles on dielectric permittivity, electrical conductivity, director relaxation frequency, threshold and switching voltages of a nematic liquid crystalline material. Liq Cryst. 2014;41:1803–1810.
  • Sandoval S, Sundaresan A, Rao CNR, et al. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem Eur J. 2014;20:11999–12003.
  • Adamu H, Dubey P, Anderson JA. Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem Eng J. 2016;284:380–388.
  • Chen J, Yao B, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide. CARBON. 2013;64:225–229.
  • Wang G, Sun X, Li C, et al. Tailoring oxidation degrees of graphene oxide by simple chemical reactions. Appl Phys Lett. 2011;99:1–3.
  • Rance GA, Marsh DH, Nicholas RJ, et al. UV-vis absorption spectroscopy of carbon nanotubes: relationship between the pi-electron plasmon and nanotube diameter. Chem Phys Lett. 2010;493:19–23.
  • Richtera L, Chudobova D, Cihalova K, et al. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms. Materials. 2015;8:2994–3011.
  • Szaboa T, Maroni P, Szilagyi I. Size-dependent aggregation of graphene oxide. Carbon. 2020;160:145–155.
  • Tucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon family study. Crit Rev Anal Chem. 2016;46:502–520.
  • Uttam R, Yadav N, Kumar S, et al. Strengthening of columnar hexagonal phase of a room temperature discotic liquid crystalline material by using ferroelectric barium titanate nanoparticles. J Mol Liq. 2019;294:111609.
  • Dhar R, Pandey RS, Agrawal VK. Optical and thermodynamic studies of binary mixture of nematic liquid crystal from homologous members of alkyloxy benzoic acid. Indian J Pure Appl Phys. 2002;40:901–907.
  • Gorkunov MV, Osipov MA. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7:4348–4356.
  • Prasad SK, Kumar MV, Shilpa T, et al. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 2014;4:4453–4462.
  • Bulavin LA, Lisetski LN, Minenko SS, et al. Microstructure and optical properties of nematic and cholesteric liquid crystals doped with organo-modified platelets. J Mol Liq. 2018;67:279–285.
  • Lisetski LN, Minenko SS, Ponevchinsky VV, et al. Microstructure and incubation processes in composite liquid crystalline material (5CB) filled with multi walled carbon nanotubes. Mat wiss u Werkstofftech. 2011;42:5–14.
  • Lopatina LM, Selinger JV. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev Lett. 2009;102:1–4.
  • Ozgan S, Eskalen H, Tapkıranlı Y. Thermal and electro–optic properties of graphene oxide‑doped hexylcyanobiphenyl liquid crystal. J Theor Appl Phys. 2018;12:169–176.
  • Basu RR, Kinnamon D, Garvey A. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl Phys Lett. 2015;106:201909.
  • Al‐Zangana S, Iliut M, Turner M. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Opt Mater. 2016;4(10):1541–1548.
  • Mishra M, Dabrowski RS, Dhar R. Thermodynamical, optical, electrical and electro-optical studies of a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl dispersed with barium titanate nanoparticles. J Mol Liq. 2016;213:247–254.
  • Vimal T, Singh DP, Gupta SK, et al. Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material. Phase Transit. 2016;89:632–642.
  • Dey KC, Mandal PK. Effect of multi-walled carbon nanotubes on dielectric and electro-optic properties of a high tilt antiferroelectric liquid crystal. Phase Transit. 2019;92:302–315.
  • Yildiz S, Koseoglu I, Cetinkaya MC. Temperature-dependent electro-optical and elastic properties of carbon nanotube doped polar smectogen octylcyanobiphenyl. J Mol Liq. 2015;209:729–737.
  • Dolgov LA, Lebovka NI, Yaroshchuk OV. Effect of electrooptical memory in suspensions of carbon nanotubes in liquid crystals. Colloid J. 2009;71:603–611.
  • Hsu CJ, Lin LJ, Huang MK, et al. Electro-optical effect of gold nanoparticle dispersed in nematic liquid crystals. Crystals. 2017;7:287.
  • Huang CY, Pan HC, Hsieh CT. Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell. JPN J Appl Phys. 2006;45:6392–6394.
  • Srigengan S, Liu H, Osipov MA, et al. Anomalies in the twist elastic behaviour of mixtures of calamitic and bent-core liquid crystals. Liq Cryst. 2020;47:895–907.
  • Dalir N, Javadian S, Kakemam J, et al. Evolution of electro-chemical and electro-optical properties of nematic liquid crystal doped with graphene oxide. J Mol Liq. 2018;265:398–407.
  • Mrukiewicz M, Kowiorski K, Perkowski P, et al. Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein J Nanotechnol. 2019;10:71–78.
  • Guo Q, Yan K, Chigrinov V, et al. Ferroelectric liquid crystals: physics and applications. Crystals. 2019;9:470.
  • Sai DV, Mirri G, Kouwer PHJ, et al. Unusual temperature dependence of elastic constants of an ambient-temperature discotic nematic liquid crystal. Soft Matter. 2016;12:2960–2964.
  • Chakraborty A, Das MK, Das B, et al. Optical, dielectric and visco-elastic properties of a few hockey stick-shaped liquid crystals with a lateral methyl group. J Mater Chem C. 2013;1:7418–7429.
  • Sarkar SK, Pramanik A, Das MK. Measurement of splay elastic constant and rotational viscosity of an induced nematic binary system. Liq Cryst. 2016;43(10):1333–1340.
  • Sathyanarayana P, Sadashiva BK, Dhara S. Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules. Soft Matter. 2011;7:8556.
  • Pandey FP, Rastogi A, Dhar R, et al. Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4ʹ-Heptyl-4-biphenylcarbonitrile. Liq Cryst. 2020;47:1025–1040.
  • Dhar R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistances. Indian J Pure Appl Phys. 2004;42:56–61.
  • Mishra R, Hazarika J, Hazarika A, et al. Dielectric properties of a strongly polar nematic liquid crystal compound doped with gold nanoparticles. Liq Cryst. 2018;45:1661–1671.
  • Lu J, Moon KS, Xu J, et al. Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem. 2006;16:1543–1548.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341–351.
  • Verma R, Dhar R, Dabrowski RS, et al. Single walled carbon nanotubes persuaded optimization of the display parameters of a room temperature liquid crystal 4-pentyl-4′cyanobiphenyl. J Mol Liq. 2016;221:190–196.
  • Urban S, Briickert T, Wurflinger A. Dielectric studies on liquid crystals under high pressure: low frequency relaxation process in the nematic and smectic A phase of 4-n-Octyl-4ʹ-Cyanobiphenyl (8 CB). Z Naturforsch. 1994;49:552–558.
  • Wang B, Liu J, Zhao Y, et al. Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl Mater Interfaces. 2016;16:1–29.
  • Varshini GV, Rao DSS, Hiremath US, et al. Dielectric and viscoelastic investigations in a binary system of soft- and rigid-bent mesogens exhibiting the twist-bend nematic phase. J Mol Liq. 2020;20: 37229–9.
  • Dhahri A, Dhahri E, Hlil EK. Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 2018;8:9103–9111.
  • Park KA, Lee LM, Lee SH, et al. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J Phys Chem C. 2007;111:1620–1624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.