315
Views
0
CrossRef citations to date
0
Altmetric
Article

Fabrication of optical vortex array by fixing standing wave mediated periodic defects in nematic liquid crystals via photopolymerization

, , , & ORCID Icon
Pages 475-484 | Received 21 Jul 2021, Accepted 01 Sep 2021, Published online: 13 Sep 2021

References

  • Allen L, Beijersbergen MW, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45(11):8185.
  • Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics. 2011;3(2):161–204.
  • Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser Photonics Rev. 2008;2(4):299–313.
  • Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond A Math Phys Sci. 1974;336(1605):165–190.
  • Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams. Nature. 2010;467(7313):301–304.
  • Yang Y, Thirunavukkarasu G, Babiker M, et al. Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys Rev Lett. 2017;119(9):094802.
  • Clark CW, Barankov R, Huber MG, et al. Controlling neutron orbital angular momentum. Nature. 2015;525(7570):504–506.
  • Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics. 2009;1(1):1–57.
  • Ramachandran S, Kristensen P. Optical vortices in fiber. Nanophotonics. 2013;2(5–6):455–474.
  • Padgett M, Courtial J, Allen L. Light’s orbital angular momentum. Phys Today. 2004;57(5):35–40.
  • Dholakia K, Čižmár T. Shaping the future of manipulation. Nat Photonics. 2011;5(6):335–342.
  • Paterson L, MacDonald MP, Arlt J, et al. Controlled rotation of optically trapped microscopic particles. Science. 2001;292(5518):912–914.
  • Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5(6):343–348.
  • Dennis MR, King RP, Jack B, et al. Isolated optical vortex knots. Nat Phys. 2010;6(2):118–121.
  • Bernet S, Jesacher A, Fürhapter S, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express. 2006;14(9):3792–3805.
  • Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412(6844):313–316.
  • Heckenberg N, McDuff R, Smith C, et al. Generation of optical phase singularities by computer-generated holograms. Opt Lett. 1992;17(3):221–223.
  • Beijersbergen M, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun. 1994;112(5–6):321–327.
  • Cai X, Wang J, Strain MJ, et al. Integrated compact optical vortex beam emitters. Science. 2012;338(6105):363–366.
  • Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt Lett. 2002;27(21):1875–1877.
  • Schurig D, Mock JJ, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980.
  • Ma X, Huang C, Pu M, et al. Multi-band circular polarizer using planar spiral metamaterial structure. Opt Express. 2012;20(14):16050–16058.
  • Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep. 2015;5(1):1–7.
  • Voloschenko D, Lavrentovich O. Optical vortices generated by dislocations in a cholesteric liquid crystal. Opt Lett. 2000;25(5):317–319.
  • MacDonald M, Prentice P, Dholakia K. Optical vortices produced by diffraction from dislocations in two-dimensional colloidal crystals. New J Phys. 2006;8(10):257.
  • Barboza R, Bortolozzo U, Assanto G, et al. Vortex induction via anisotropy stabilized light-matter interaction. Phys Rev Lett. 2012;109(14):143901.
  • Brasselet E. Tunable optical vortex arrays from a single nematic topological defect. Phys Rev Lett. 2012;108(8):087801.
  • Migara L, Lee H, Lee C-M, et al. External pressure induced liquid crystal defects for optical vortex generation. AIP Adv. 2018;8(6):065219.
  • Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. 2006;96(16):163905.
  • Brasselet E, Murazawa N, Misawa H, et al. Optical vortices from liquid crystal droplets. Phys Rev Lett. 2009;103(10):103903.
  • Brasselet E, Loussert C. Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. Opt Lett. 2011;36(5):719–721.
  • Migara L, Song J-K. Standing wave-mediated molecular reorientation and spontaneous formation of tunable, concentric defect arrays in liquid crystal cells. Npg Asia Mater. 2018;10(1):e459–e459.
  • Migara L, Lee C-M, Kwak K, et al. Tunable optical vortex arrays using spontaneous periodic pattern formation in nematic liquid crystal cells. Curr Appl Phys. 2018;18(7):819–823.
  • Crawford GP, Zumer S. Liquid crystals in complex geometries: formed by polymer and porous networks. CRC Press; London, 1996.
  • Yang D-K, Wu S-T. Fundamentals of liquid crystal devices. John Wiley& Sons, Ltd; 2014.
  • Broer D. Liquid crystalline networks formed by photoinitiated chain cross-linking. In: Crawford GP, Zumer S, editors. Liquid crystals in complex geometries: formed by polymer and porous networks. CRC Press; London, 1996. p. 239.
  • Hisakado Y, Kikuchi H, Nagamura T, et al. Large electro‐optic Kerr effect in polymer‐stabilized liquid‐crystalline blue phases. Adv Mater. 2005;17(1):96–98.
  • Bao R, Liu C-M, Yang D-K. Smart bistable polymer stabilized cholesteric texture light shutter. Appl Phys Express. 2009;2(11):112401.
  • Baek J-I, Kim K-H, Kim JC, et al. Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks. Jpn J Appl Phys. 2009;48(5R):056507.
  • Yang D-K, Cui Y, Nemati H, et al. Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals. J Appl Phys. 2013;114(24):243515.
  • Bowman CN, Carver AL, Kennett SL, et al. Polymers for information storage systems. Polym Bull. 1988;20(4):329–333.
  • Baliyan VK, Lee SH, Kang S-W. Optically and spatially templated polymer architectures formed by photopolymerization of reactive mesogens in periodically deformed liquid crystals. Npg Asia Mater. 2017;9(8):e429–e429.
  • Baliyan VK, Lee B, Song J-K. Quantum dot arrays fabricated using in situ photopolymerization of a reactive mesogen and dielectrophoresis. ACS Appl Mater Interfaces. 2020;12(36):40655–40661.
  • Lee KM, Ware TH, Tondiglia VP, et al. Initiatorless photopolymerization of liquid crystal monomers. ACS Appl Mater Interfaces. 2016;8(41):28040–28046.
  • Weng L, Liao P-C, Lin -C-C, et al. Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces. AIP Adv. 2015;5(9):097218.
  • Bremer M, Naemura S, Tarumi K. Model of ion solvation in liquid crystal cells. Jpn J Appl Phys. 1998;37(1A):L88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.