450
Views
8
CrossRef citations to date
0
Altmetric
Article

Compact integral imaging 2D/3D compatible display based on liquid crystal micro-lens array

, , &
Pages 512-522 | Received 12 Aug 2021, Accepted 07 Sep 2021, Published online: 21 Sep 2021

References

  • Lv GJ, Zhao BC, Wu F, et al. Autostereoscopic 3D display with high brightness and low crosstalk. Appl Optics. 2017;56(10):2792–2795.
  • Lee S, Park J, Heo J, et al. Autostereoscopic 3D display using directional subpixel rendering. Opt Express. 2018;26(16):20233–20247.
  • Ma XL, Zhao WX, Hu JQ, et al. Autostereoscopic three-dimensional display with high resolution and low cross talk using a time-multiplexed method. Opt Eng. 2018;57(9):095105.
  • Zhao Y, Cao L, Zhang H, et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express. 2015;23(20):25440–25449.
  • Cao L, Wang Z, Zhang H, et al. Volume holographic printing using unconventional angular multiplexing for three-dimensional display. Appl Opt. 2016;55(22):6046–6051.
  • Zhang W, Cao L, Brady D, et al. Twin-image-free holography: a compressive sensing approach. Phys Rev Lett. 2018;121:093902.
  • Javidi B, Carnicer A, Arai J, et al. Roadmap on 3D integral imaging: sensing, processing, and display. Opt Express. 2020;28(22):32266–32293.
  • Wang X, Hua H. Depth-enhanced head-mounted light field display based on integral imaging. Opt Lett. 2021;46(5):985–988.
  • Usmani K, O’Connor T, Shen X, et al. Three-dimensional polarimetric integral imaging in photon-starved conditions: performance comparison between visible and long wave infrared imaging. Opt Express. 2020;28(13):19281–19294.
  • Xing Y, Xia YP, Li S, et al. Annular sector elemental image array generation method for tabletop integral imaging 3D display with smooth motion parallax. Opt Express. 2020;28(23):34706–34716.
  • Blackwell C, Can C, Khan J, et al. Volumetric 3D display in real space using a diffractive lens, fast projector, and polychromatic light source. Opt Lett. 2019;44(19):4901–4904.
  • Kumagai K, Yamaguchi I, Hayasaki Y. Three-dimensionally structured voxels for volumetric display. Opt Lett. 2018;43(14):3341–3344.
  • Cossairt OS, Napoli J, Hill SL, et al. Occlusion-capable multiview volumetric three-dimensional display. Appl Opt. 2007;46(8):1244–1250.
  • Wang QH, Ji CC, Li L, et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher. Opt Express. 2016;24(1):9–16.
  • Wang X, Hua H. Theoretical analysis for integral imaging performance based on microscanning of a microlens array. Opt Lett. 2008;33(5):449–451.
  • Zhang HL, Deng H, Yu WT, et al. Tabletop augmented reality 3D display system based on integral imaging. J Opt Soc Am B. 2017;34(5):B16.
  • Yeom J, Hong K, Park S, et al. Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer. Opt Express. 2013;21(25):31189–31200.
  • Kim Y, Hong K, Yeom J, et al. A frontal projection-type three-dimensional display. Opt Express. 2012;20(18):20130–20138.
  • Wang Z, Xu M, Lv G, et al. Single frontal projection autostereoscopic three-dimensional display using a liquid crystal lens array. Opt Express. 2020;28(2):1621–1630.
  • Deng H, Li Q, He W, et al. 2D/3D mixed frontal projection system based on integral imaging. Opt Express. 2020;28(18):26385–26394.
  • Yeom J, Jeong J, Jang C, et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element. Appl Opt. 2015;54(30):8856–8862.
  • Hong K, Yeom J, Jang C, et al. Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements. Opt Express. 2014;22(12):14363–14374.
  • Zhang HL, Deng H, Li JJ, et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt Lett. 2019;44(2):387–390.
  • Xiong JH, Li YNQ, Li K, et al. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses. Opt Lett. 2021;46(7):1760–1763.
  • Xiong JH, Yin K, Li K, et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv Photonics Res. 2021;2:2000049.
  • Hong J, Kim Y, Park S, et al. 3D/2D convertible projection-type integral imaging using concave half mirror array. Opt Express. 2010;18(20):20628–20637.
  • Wang Z, Wang A, Wang S, et al. Convertible 2D-3D display using an edge-lit light guide plate based on integral imaging. Proc SPIE. 2015;9579:9579.
  • Jung JH, Kim Y, Kim Y, et al. Integral imaging system using an electroluminescent film backlight for three-dimensional two-dimensional convertibility and a curved structure. Appl Opt. 2009;48(5):998–1007.
  • Deng H, Wang QY, Li DH, et al. A 3D/2D convertible integral imaging display with high optical efficiency. SID Symp Dig Tech Pap. 2016;24(2):85–89.
  • Ren H, Xu S, Liu Y, et al. Switchable focus using a polymeric lenticular microlens array and a polarization rotator. Opt Express. 2013;21:7916–7925.
  • Chang YC, Jen TH, Ting CH, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt Express. 2014;22(3):2714–2724.
  • Jen TH, Chang YC, Ting CH, et al. Locally controllable liquid crystal lens array for partially switchable 2D/3D display. J Disp Technol. 2015;11(10):839–844.
  • Lee HH, Huang PJ, Wu JY, et al. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array. Proc SPIE. 2017;10219.
  • Hwang YS, Yoon TH, Kim JC. Design and fabrication of variable focusing lens array using liquid crystal for integral photography. Jpn J Phy. 2003;42:6434–6438.
  • Park CK, Hwang YS, Lee SS. Integral imaging system enabling enhanced depth of field incorporating a birefringent liquid crystal lens array. Korean J Opt Photonics. 2008;19(6):394–399.
  • Zhang Y, Weng X, Liu P, et al. Electrically high-resistance liquid crystal micro-lens arrays with high performances for integral imaging 3D display. Opt Commun. 2020;462:125299.
  • Chou PY, Wu JY, Huang SH, et al. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement. Opt Express. 2019;27(2):1164–1178.
  • Dou H, Chu F, Guo YQ, et al. Large aperture liquid crystal lens array using a composited alignment layer. Opt Express. 2018;26(7):9254–9262.
  • Wang YJ, Hsieh HA, Lin YH. Electrically tunable gradient-index lenses via nematic liquid crystals with a method of spatially extended phase distribution. Opt Express. 2019;27(22):32398–32408.
  • Li R, Chu F, Tian LL, et al. Liquid crystal lenticular lens array with extended aperture by using gradient refractive index compensation. Liq Cryst. 2021;48(3):378–384.
  • Wang D, Liu C, Shen C, et al. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX. 2020;1(1).
  • Ren H, Wu ST. Liquid-crystal-based linear polarization rotator. Appl Phys Lett. 2007;90:121123.
  • Shanga X, Missinnea J, Beneiteza NT, et al. Reverse replication of circular micro grating structures with soft lithography. Proc SPIE. 2015;9661.
  • Li SL, Wang QH, Xiong ZL, et al. Multiple orthographic frustum combing for real-time computer-generated integral imaging system. J Display Technol. 2014;10:704–709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.