300
Views
5
CrossRef citations to date
0
Altmetric
Article

Dispersion of thiol capped AuNPs in rufigallol derivative discotic liquid crystal-Enhanced one dimensional electrical conductivity

, , & ORCID Icon
Pages 523-542 | Received 07 Jun 2021, Accepted 15 Sep 2021, Published online: 30 Sep 2021

References

  • Kumar S. Rufigallol-based self-assembled supramolecular architectures. Phase Transit. 2008;81(1):113–128.
  • Kumar M, Varshney S, Kumar S. Emerging nanoscience with discotic liquid crystals. Polym J. 2021;53:283–297.
  • Termine R, Golemme A. Charge mobility in discotic liquid crystals. Int J Mol Sci. 2021;22(2):877(1–51).
  • Fitas J, Marzec M, Kurp K, et al. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures. Liq Cryst. 2017;44(9):1468–1476.
  • Basu R. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching. Phys Rev E. 2017;96(1):012707(1–7).
  • Fryn P, Jewłoszewicz B, Bogdanowicz KA, et al. Research of binary and ternary composites based on selected aliphatic or aliphatic–aromatic polymers, 5CB or SWCN toward biodegradable electrodes. Materials. 2020;13(11):2480(1–20).
  • Shukla RK, Chaudhary A, Bubnov A, et al. Electrically switchable birefringent self-assembled nanocomposites: ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq Cryst. 2020;47(9):1379–1389.
  • Basu R, Atwood LJ. Homeotropic liquid crystal device employing vertically aligned carbon nanotube arrays as the alignment agent. Phys Rev E. 2020;102(2):022701(1–6).
  • Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liq Cryst. 2019;46(13–14):2057–2074.
  • Gupta M, Gupta SP, Mohapatra SS, et al. Room‐temperature oligomeric discotic nematic liquid crystals over a wide temperature range: structure–property relationships. Chem Eur J. 2017;23(44):10626–10631.
  • Dierking I, Zangana S. Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials. 2017;7(10): 305(1–28).
  • Buchnev O, Ouskova E, Reznikov Y, et al. Enhanced dielectric response of liquid crystal ferroelectric suspension. Mol Cryst Liq Cryst. 2004;422(1):47–55.
  • Prasad SK, Sandhya KL, Nair GG, et al. Electrical conductivity and dielectric constant measurements of liquid crystal–gold nanoparticle composites. Liq Cryst. 2006;33(10):1121–1125.
  • Qia H, Hegmann T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J Mater Chem. 2006;16(43):4197–4205.
  • Podgornov FV, Ryzhkova AV, Haase W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl Phys Lett. 2010;97(21):212903(1–3).
  • Singh S. Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Crystals. 2019;9(9):475(1–17).
  • Sio LD, Caputo R, Cataldia U, et al. Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials. J Mater Chem. 2011;21(47):18967–18970.
  • Park SY, Stroud D. Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle. Phys Rev Lett. 2005;94(21):217401(1–4).
  • Khare A, Uttam R, Kumar S, et al. Enhanced charge carrier conduction and other characteristic parameters of hexagonal plastic columnar phase of a discotic liquid crystalline material due to functionalized gold nanoparticles. J Mol Liq. 2020;317:113985(1–9).
  • Demers SME, Hsieh LJH, Shirazinejad CR, et al. Ultraviolet analysis of gold nanorod and nanosphere solutions. J Phys Chem C. 2017;121(9):5201–5207.
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle–liquid crystal composites. Nanoscale. 2014;6(14):7743–7756.
  • Rao CNR, Kulkarni GU, Thomas PJ, et al. Metal nanoparticles and their assemblies. Chem Soc Rev. 2000;29(1):27–35.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47(15):2754–2787.
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • O’Donnell A, Yach K, Reven L. Particle−Particle interactions and chain dynamics of fluorocarbon and hydrocarbon functionalized ZrO 2 nanoparticles. Langmuir. 2008;24(6):2465–2471.
  • Csehab L, Mehl GH. Structure–property relationships in nematic gold nanoparticles. J Mater Chem. 2007;17(4):311–315.
  • Swierczewska M, Lee S, Chen X. The design and application of fluorophore–gold nanoparticle activatable probes. Phys Chem Chem Phys. 2011;13(21):9929–9941.
  • Zhang T, Wang W, Zhang D, et al. Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Func Mater. 2010;20(7):1152–1160.
  • Yehezkeli O, Vered RT, Raichlin S, et al. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano. 2011;5(3):2385–2391.
  • Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–1315.
  • Gowda A, Kumar S. Recent advances in discotic liquid crystal-assisted nanoparticles. Materials. 2018;11(3):)382(1–18).
  • Prakash J, Khan S, Chauhan S, et al. Metal oxide-nanoparticles and liquid crystal composites: a review of recent progress. J Mol Liq. 2020;297:112052.
  • Holt LA, Bushby RJ, Evans SD, et al. 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles. J Appl Phys. 2008;103(6):063712(1–8).
  • Qi H, Hegmann T. Liquid crystal–gold nanoparticle composites. Liq Cryst Today. 2011;20(4):102–114.
  • Kumar S, Pal SK, Kumar PS, et al. Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter. 2007;3(7):896–900.
  • Mishra M, Kumar S, Dhar R. Gold nanoparticles in plastic columnar discotic liquid crystalline material. Thermochim Acta. 2016;631:59–70.
  • Mishra M, Kumar S, Dhar R. Effect of dispersed colloidal gold nanoparticles on the electrical properties of a columnar discotic liquid crystal. RSC Adv. 2014;4(107):62404–62412.
  • Vijayaraghavan D, Kumar S. Self-assembled superlattices of gold nanoparticles in a discotic liquid crystal. Mol Cryst Liq Cryst. 2009;508(1):101–114.
  • Kumar S, Lakshminarayanan V. Inclusion of gold nanoparticles into a discotic liquid crystalline matrix. Chem Commun. 2004;10(14):1600–1601.
  • Supreet, Pratibha R, Kumar S. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liq Cryst. 2014;41(7):933–939.
  • Díaz LB, Cruz RM, Salazar JJV, et al. Synthesis and properties of the self-assembly of gold–copper nanoparticles into nanoribbons. Langmuir. 2018;34(32):9394–9401.
  • Krajczewski J, Kołątaj K, Kudelski A. Plasmonic nanoparticles in chemical analysis. RSC Adv. 2017;7(28):17559–17576.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40(1):306–319.
  • Kanayama N, Tsutsumi O, Kanazawa A, et al. Distinct thermodynamic behavior of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem Commun. 2001;24(24):2640–2641.
  • Bisoyi HK, Kumar S. Microwave-assisted synthesis of rufigallol and its novel room-temperature liquid crystalline derivative. Tetrahedron Lett. 2007;48(25):4399–4402.
  • Pandey MB, Dhar R, Dabrowski R. Characteristics of the collective dielectric relaxation mode of the incommensurate SmC*α phase. J Phys: Condens Matter. 2008;20(11):115207(1–5).
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341–351.
  • Srivastava SL, Dhar R. Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Ind J Pure Appl Phys. 1991;29(11):745–751.
  • Dhar R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistances. Ind J Pure Appl Phys. 2004;42(1):56–61.
  • Dhar R, Pandey RS, Agrawal VK. Optical and thermodynamic studies of binary mixtures of nematic liquid crystals from homologous members of alkyloxybenzoic acid. Ind J Pure Appl Phys. 2002;40(12):901–907.
  • Dwivedi A, Dhar R, Dabrowski R. Dielectric Spectroscopy of para‐, ferro‐, and anti‐ferroelectric Phases of (S)‐(+)‐(1‐Methylheptyloxycarbonyl)Phenyl 4′‐(6‐Perfluoropentanoyloxyhex‐1‐Oxy) Biphenyl‐4‐Carboxylate. Soft Mater. 2009;7(1):54–65.
  • Dhar R, Gupta M, Agrawal VK, et al. Dielectric relaxation studies in n-(4-octyloxy-2-hydroxybenzylidene)-4-carbethoxyaniline. Phase Trans. 2004;77(4):375–384.
  • Srivastava SL, Dhar R, Mukherjee A. Thermodynamical properties of bicomponent mixtures of liquid crystals cholesteryl pelargonate and nonyloxybenzoic acid. Mol Cryst Liq Cryst. 1996;287(1):139–154.
  • Uttam R, Yadav N, Kumar S, et al. Strengthening of columnar hexagonal phase of a room temperature discotic liquid crystalline material by using ferroelectric barium titanate nanoparticles. J Mol Liq. 2019;294:111609(1–12).
  • Uttam R, Kumar S, Dhar R. Magnified charge carrier conduction, permittivity, and mesomorphic properties of columnar structure of a room temperature discotic liquid crystalline material due to the dispersion of low concentration ferroelectric nanoparticles. Phys Rev E. 2020;102(5):052702(1–14).
  • Yadav N, Kumar S, Dhar R. Cadmium selenide quantum dots to ameliorate the properties of a room temperature discotic liquid crystalline material. RSC Adv. 2015;5(96):78823–78832.
  • Gowda A, Kumar M, Thomas AR, et al. Self‐assembly of silver and gold nanoparticles in a metal‐free phthalocyanine liquid crystalline matrix: structural, thermal, electrical and nonlinear optical characterization. Chem Sel. 2016;1(7):1361–1370.
  • Varshney S, Kumar M, Gowda A, et al. Soft discotic matrix with 0-D silver nanoparticles: impact on molecular ordering and conductivity. J Mol Liq. 2017;238:290–295.
  • Lehmann M, Kestemont G, Aspe RG, et al. High charge‐carrier mobility in π‐deficient discotic mesogens: design and structure–property relationship. Chem Eur J. 2005;11(11):3349–3362.
  • Yoneya M, Makabe T, Miyamoto A, et al. Tilt orientationally disordered hexagonal columnar phase of phthalocyanine discotic liquid crystals. Phys Rev E. 2014;89(6):062505(1–8).
  • Wood TA, Lintuvuori JS, Schofield AB, et al. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science. 2011;334(6052):79–83.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267(5613):673–679.
  • Srivastava SL, Dhar R. Effect of γ-irradiation on liquid crystalline properties of cholesteryl pelargonate (nonanoate). Radiat Phys Chem. 1996;47(2):287–293.
  • Miszta K, de Graaf J, Bertoni G, et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat Mater. 2011;10(11):872–876.
  • Feng X, Sosa-Vargas L, Umadevi S, et al. Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π-π Interactions. Adv. Funct Mater. 2015;25(8):1180–1192.
  • De J, Gupta SP, Bala I, et al. Phase behavior of a new class of anthraquinone-based discotic liquid crystals. Langmuir. 2017;33(48):13849–13860.
  • Gupta M, Gupta SP, Rasna MV, et al. A new strategy towards the synthesis of a room-temperature discotic nematic liquid crystal employing triphenylene and pentaalkynylbenzene units. Chem Commun. 2017;53(21):3014–3017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.