260
Views
2
CrossRef citations to date
0
Altmetric
Article

Effect of shape and nano-segregation in Δ2-isoxazoline and isoxazole on the mesogenic behavior of 1,3-bis-isophthalimines

ORCID Icon, ORCID Icon, , , , , & show all
Pages 699-708 | Received 28 Jun 2021, Accepted 08 Nov 2021, Published online: 14 Jan 2022

References

  • Hird M. Fluorinated liquid crystals–properties and applications. Chem Soc Rev. 2007;36:2070–2095.
  • Kirsch P. Fluorine in liquid crystal design for display applications. J. Fluor Chem 2015;177:29–36.
  • Walba DM, Razavi HA, Clark NA, et al. Design and synthesis of new ferroelectric liquid crystals. 5. Properties of some chiral fluorinated FLCs: a direct connection between macroscopic properties and absolute configuration in a fluid phase. J Am Chem Soc. 1988;110:8686–8691.
  • Bedel J, Rouillon J, Marcerou J, et al. Influence of fluoro substituents on the mesophase behaviour of banana-shaped molecules. J Mat Chem. 2002;12:2214–2220.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Percec V, Johansson G, Ungar G, et al. Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotropic hexagonal columnar liquid crystalline phase. J Am Chem Soc. 1996;118:9855–9866.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426.
  • van Houtem MHCJ, Benaskar F, Cfc F, et al. Helical self-assembly and co-assembly of fluorinated, preorganized discotics. Org Biomol Chem. 2012;10:5898–5908.
  • Terashima Y, Sakurai T, Bando Y, et al. Assembled structures of anion-responsive π-systems tunable by alkyl/perfluoroalkyl segments in peripheral side chains. Chem Mater. 2013;25:2656–2662.
  • Cheng XH, Diele S, Tschierske C. Molecular design of liquid-crystalline block molecules: semifluorinated pentaerythritol tetrabenzoates exhibiting lamellar, columnar, and cubic mesophases. Angew Chemie Int Ed. 2000;39:592–595.
  • Saez IM, Goodby JW. Complex liquid crystals - Big is beautiful. Liq Cryst Today. 2004;13:1–15.
  • Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chemie Int Ed. 2013;52:8828–8878.
  • Wang L, Huang D, Lam L, et al. Bowlics: history, advances and applications. Liq Cryst Today. 2017;26:85–111.
  • Tschierske C. Microsegregation: from basic concepts to complexity in liquid crystal self-assembly. Isr J Chem. 2012;52:935–959.
  • Chen X, Korblova E, Dong D, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc of the Nat Acad Sci. 2020;117:14021–14031.
  • Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid-crystal material with highly polar order. Adv Matter. 2017;29:1702354.
  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. PhysChemChemPhys. 2017;19:11429–11435.
  • Lavrentovich OD. Ferroelectric nematic liquid crystal, a century in waiting. Proc Nat Acad Sci. 2020;117:14629–14631.
  • Sebastián N, Cmok L, Mandle RJ, et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Phys Rev Lett. 2020;124:037801.
  • Kats EI. Stability of the uniform ferroelectric nematic phase. Phys Rev E. 2021;103:012704.
  • Chen X, Korblova E, Glaser MA, et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics. Proc Nat Acad Sci. 2021;118:e2104092118.
  • Pocock EE, Mandle RJ, Goodby JW. Molecular shape as a means to control the incidence of the nanostructured twist Bend phase. Soft Matter. 2018;14:2508–2514.
  • Palffy-Muhoray P, Lee MA, Petschek RG. Ferroelectric nematic liquid crystals: realizability and molecular constraints. Phys Rev Lett. 1988;60:2303–2306.
  • Tschierske C. Fluorinated liquid crystals: design of soft nanostructures and increased complexity of self-assembly by perfluorinated segments. Top Curr Chem. 2011;318:1–108.
  • Al-Maharik N, Kirsch P, Slawin AMZ, et al. The influence of vicinal threo-difluorination on electro-optic and mesogenic properties of propyleneoxy-linked nematic liquid crystals. Tetrahedron. 2014;70:4626–4630.
  • Krafft MP, Riess JG. Chemistry, physical chemistry, and uses of molecular fluorocarbon−hydrocarbon diblocks, triblocks, and related compounds - unique “apolar” components for self-assembled colloid and interface engineering. Chem Rev. 2009;109:1714–1792.
  • Lemal DM. Perspective on fluorocarbon chemistry. J. Org Chem 2004;69:1–11.
  • Cormanich RA, O’Hagan D, Bühl M. Hyperconjugation is the source of helicity in perfluorinated n-Alkanes. Angew Chemie Int Ed. 2017;56:7867–7870.
  • Smart BE. Molecular structures and energetics. Deerfield Beach: VCH Publishers; 1986. p. 3.
  • Dixon DA, Smart BE. Molecular structures, electronic properties and energetics of fluorinated allenes and isomeric acetylenes. J Phys Chem. 1989;93:7772–7780.
  • Farnham WB, Smart BE, Middleton WJ, et al. Crystal and molecular structure of tris(dimethylamino)sulfonium trifluoromethoxide. Evidence for negative fluorine hyperconjugation. J Am Chem Soc. 1985;107:4565–4567.
  • Krevelen DW, Te Nijenhuis K. Properties of polymers. Amsterdam: Elsevier; 2009. Chapter 7, Cohesive properties and solubility; p. 189–227.
  • Kubica P, Wolinska-Grabczyk A. Correlation between cohesive energy density, fractional free volume, and gas transport properties of poly(ethylene-co-vinyl acetate) materials. Int J Polym Sci. 2015;2015:861979.
  • Carvalho SP, Lucas EF, González G, et al. Determining Hildebrand solubility parameter by ultraviolet spectroscopy and microcalorimetry. J Braz Chem Soc. 2013;24:1998–2007.
  • Lehmann M, Dechant M, Lambov M, et al. Free space in liquid crystals -molecular design, generation, and usage. Acc Chem Res. 2019;52:1653–1664.
  • Fritsch L, Baptista LA, Bechtold IH, et al. Isoxazoline- and isoxazole-liquid crystalline schiff bases: a puzzling game dictated by entropy and enthalpy effects. J Mol Liq. 2020;298:111750.
  • Nealon GL, Greget R, Dominguez C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem. 2012;8:349–370.
  • Suhan ND, Loeb SJ, Eichhorn SH. Mesomorphic [2]rotaxanes: sheltering ionic cores with interlocking components. J Am Chem Soc. 2013;135:400–408.
  • Bezborodov V, Kauhanka N, Lapanik V. New liquid crystalline 3,5-disubstituted 4,5-dihydro-1,2-oxazoles. Mol Cryst Liq Cryst. 2004;411:103–110.
  • Tavares A, Livotto PR, Gonçalves PF, et al. 3-Arylisoxazolyl-5-carboxylic acid and 5-(Hydroxymethyl)-3-aryl-2-isoxazoline as molecular platforms for liquid-crystalline materials. J Braz Chem Soc. 2009;20:1742–1752.
  • Fritsch L, Merlo AA. An old dog with new tricks: schiff bases for liquid crystals materials based on isoxazolines and isoxazoles. ChemistrySelect. 2016;1:23–30.
  • Da Silva CM, Da Silva DL, Modolo LV, et al. Schiff bases: a short review of their antimicrobial activities. J Adv Res. 2011;2:1–8.
  • Da Rosa RR. Isoxazolinas e Isoxazóis como reais candidatos na preparação de cristais líquidos polares [Isoxazolines and isoxazoles as real candidate for polar liquid crystals] [thesis]. Porto Alegre (Brazil): Universidade Federal do Rio Grande do Sul; 2018.
  • Gonçalves IL, Da Rosa RR, Eifler-Lima VL, et al. The use of isoxazoline and isoxazole scaffolding in the design of novel thiourea and amide liquid-crystalline compounds. Beilstein J. Org Chem 2020;16:175–184.
  • Kuo H-M, Tsai S-L, Lee G-H, et al. Heterocyclic 3, 5-disubstituted phenylpyrazoles and isoxazoles: synthesis and mesomorphic behavior. Tetrahedron. 2013;69:618–626.
  • Lopes LD, Merlo AA. Synthesis and liquid crystal properties of new fluorinated isoxazoles. Mol Cryst Liq Cryst. 2015;612:149–157.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev. A.03. Wallingford (CT): Gaussian, Inc., GaussView 5.0. Wallingford, E.U.A.; 2016.
  • Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19:1–32.
  • Barton AFM. CRC Handbook of solubility parameters and other cohesion parameters (Boca Raton, Florida, USA; CRC Press). 1991. p. 768.
  • Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14:147–154.
  • Da Rosa RR, Weber CSB, Guzman E, et al. Isoxazolines as novel building blocks for Polar Smectic Phases. Paper presented at: 17th International Conference on Ferroelectric Liquid Crystals; Boulder, USA; 2019.
  • Zafiropoulos NA, Choi EJ, Dingemans T, et al. New all-aromatic liquid crystal architectures. Chem Mater. 2008;20:3821–3831.
  • Lopes LD, Bortoluzzi AJ, Prampolini G, et al. Structural and morphological aspects of small 3, 5-disubstituted isoxazoles. J. Fluor Chem 2018;211:24–36.
  • Sales ES, Bortoluzzi AJ, Merlo AA. Crystal structure of 5-(4-tert-butoxyphenyl)-3-(4-n-octyloxyphenyl)-4,5-dihydroisoxazole. Acta Crystallogr Sect E. 2019;75:889–896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.