309
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Two-dimensional blue phase liquid crystal microlens array with low driving voltage and polarization independence

, , &
Pages 836-844 | Received 15 Nov 2021, Accepted 02 Dec 2021, Published online: 16 Dec 2021

References

  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18:1679–1684.
  • Nose T, Sato S. A liquid crystal microlens obtained with a non-uniform electric field. Liq Cryst. 1989;5:1425–1433.
  • Nose T, Masuda S, Sato S. A liquid crystal microlens with hole-patterned electrodes on both substrates. Jpn J Appl Phys. 1992;31:1643–1646.
  • Chen CW, Huang YP, Chen PC. Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display. J Disp Technol. 2012;8:559–561.
  • Chang YC, Jen TH, Huang YP, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt Express. 2014;22:2714–2724.
  • Zhang YA, Weng XY, Guo TL, et al. Electrically high-resistance liquid crystal micro-lens arrays with high performances for integral imaging 3D display. Opt Commun. 2020;462:125299.
  • Chu F, Wang D, Wang QH, et al. Multi-view 2D/3D switchable display with cylindrical liquid crystal lens array. Crystals. 2021;11:715.
  • Tian LL, Chu F, Wang QH, et al. Fast responsive 2D/3D switchable display using liquid crystal microlens array. Opt Lett. 2021;46:5870–5873.
  • Xiong JH, Hsiang EL, Wu ST, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10:216.
  • Li GQ, Mathine DL, Valley P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. P N A S. 2006;103:6100–6104.
  • Jamali A, Bryant D, Bhowmick AK, et al. Large area liquid crystal lenses for correction of presbyopia. Opt Express. 2020;28:33982.
  • Ferstl M, Frisch A. Static and dynamic Fresnel zone lenses for optical interconnections. J Mod Opt. 1996;43:1451–1462.
  • Lin YH, Wang YJ, Reshetnyak V. Liquid crystal lenses with tunable focal length. Liq Cryst Rev. 2017;5:111–143.
  • Dou H, Wang QH, Sun YB, et al. Large aperture liquid crystal lens array using a composited alignment layer. Opt Express. 2018;26:9254–9262.
  • Tian LL, Chu F, Wang QH, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer. Liq Cryst. 2020;47:76–82.
  • Lin YH, Chen HS. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt Express. 2013;21:9428–9436.
  • Chu F, Guo YQ, Wang QH, et al. Four-mode 2D/3D switchable display with a1D/2D convertible liquid crystal lens array. Opt Express. 2021;29:37464–37475.
  • Kikuchi H, Yokota M, Kajiyama T, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Chen KM, Gauza S, Wu ST, et al. Hysteresis effects in blue-phase liquid crystals. J Disp Technol. 2010;6:318–322.
  • Goda K, Watanabe I, Fukuda E, et al. Fast response polymer stabilized blue phase by overdrive technique. Jpn J Appl Phys. 2020;59:1–10.
  • Zhang YX, Yoshida HY, Cho SY, et al. In situ optical characterization of twinning in liquid crystalline blue phases. Appl Mater Interfaces. 2021;13:36130–36137.
  • Hisakado Y, Kikuchi H, Kajiyama T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv Mater. 2005;17:96–98.
  • Li Y, Wu ST. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19:8045–8050.
  • Li Y, Liu Y, Wu ST, et al. Polarization independent blue-phase cylindrical lens with a resistive film. Appl Opt. 2012;51:2568–2572.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Lin SH, Huang LS, Lin CH, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Opt Express. 2014;22:925–930.
  • Lin HY, Avci N, Hwang SJ. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal–polymer composite. Liq Cryst. 2019;46:1359–1366.
  • Huang C, Zhang Q. Enhanced dielectric and electromechanical response in high dielectric constant all-polymer percolative composites. Adv Funct Mater. 2004;14:501–506.
  • Sun YB, Liu JL, Ma HM. Blue-phase liquid crystal display with high dielectric material. Liq Cryst. 2016;43:1749–1752.
  • Yan J, Cheng HC, Cauza S, et al. Extended Kerr effect of polymer-stabilized blue-phase liquid crystals. Appl Phys Lett. 2010;96:071105.
  • Yan J, Li Y, Wu ST. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt Lett. 2011;36:1404–1406.
  • Lien A. Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence. Appl Phys Lett. 1990;57:2767–2769.
  • Rao L, Yan J, Wu ST, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;98:081109.
  • Lee CT, Li Y, Wu ST, et al. Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal. Opt Express. 2011;19:17402–17407.
  • Jiao M, Yan J, Wu ST. Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal. Phys Rev E. 2011;83:041706.
  • Zhan T, Zou J, Wu ST, et al. Practical chromatic aberration correction in virtual reality displays enabled by large-size ultra-broadband liquid crystal polymer lenses. Adv Opt Mater. 2020;8:1901360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.