249
Views
4
CrossRef citations to date
0
Altmetric
Articles

Detection of anti-SARS-CoV-2 antibody for the diagnosis of past-COVID-19 infection cases using a liquid-crystal-based immunosensor

&
Pages 1285-1296 | Received 15 Oct 2021, Accepted 09 Jan 2022, Published online: 27 Jan 2022

References

  • Shereen MA, Khan S, Kazmi A, et al. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–98.
  • Akomolafe DT, Yerokun OM, Fasakin A. Resolving some critical issues in the prevention, diagnosis, treatment and management of Covid-19 using machine learning. Int J Comput Organ Trends. 2020;10(4):1–8.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
  • He F, Deng Y, Li W. Coronavirus disease 2019: what we know? J Med Virol. 2020;92(7):719–725.
  • Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J Am Med Assoc. 2020;323(11):1061–1069.
  • Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Br Med J. 2020;368:1–7.
  • Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741.
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med. 2020;58(4):711–712.
  • Qiu P, Zhou Y, Wang F, et al. Clinical characteristics, laboratory outcome characteristics, comorbidities, and complications of related COVID-19 deceased: a systematic review and meta-analysis. Aging Clin Exp Res. 2020;32:1869–1878.
  • Worldometer [Internet]. Dover (DE): Worldometers.info; [updated 2021 Oct 13; cited 2021 Oct 13]. Available from: https://www.worldometers.info/coronavirus
  • Gao Z, Xu Y, Sun C, et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect. 2021;54(1):12–16.
  • Perez-Saez J, Lauer SA, Kaiser L, et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2021;21(4):e69–e70.
  • Krammer F, Simon V. Serology assays to manage COVID-19. Science. 2020;368(6495):1060–1061.
  • Rinaldi G, Paradisi M. An empirical estimate of the infection fatality rate of COVID-19 from the first Italian outbreak. MedRxiv; 2020.
  • Segovia-Juarez J, Castagnetto JM, Gonzales GF. High altitude reduces infection rate of COVID-19 but not case-fatality rate. Respir Physiol Neurobiol. 2020;281:103494.
  • Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020;505:172–175.
  • Favresse J, Cadrobbi J, Eucher C, et al. Clinical performance of three fully automated anti-SARS-CoV-2 immunoassays targeting the nucleocapsid or spike proteins. J Med Virol. 2021;93(4):2262–2269.
  • Meyer B, Drosten C, Müller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 2014;194:175–183.
  • Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(6):482–491.
  • Che XY, Qiu LW, Pan YX, et al. Sensitive and specific monoclonal antibody-based capture enzyme immunoassay for detection of nucleocapsid antigen in sera from patients with severe acute respiratory syndrome. J Clin Microbiol. 2004;42(6):2629–2635.
  • Algaissi A, Alfaleh MA, Hala S, et al. SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients. Sci Rep. 2020;10(1):1–10.
  • Burbelo PD, Riedo FX, Morishima C, et al. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J Infect Dis. 2020;222(2):206–213.
  • Huang LR, Chiu CM, Yeh SH, et al. Evaluation of antibody responses against SARS coronaviral nucleocapsid or spike proteins by immunoblotting or ELISA. J Med Virol. 2004;73(3):338–346.
  • Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS–CoV-2: a target for vaccine development. J Virol. 2020;94(13):e00647–20.
  • Tan W, Lu Y, Zhang J, et al. Viral kinetics and antibody responses in patients with COVID-19. MedRxiv; 2020.
  • Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020;26(7):1033–1036.
  • Okba NMA, Müller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2− specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–1488.
  • Padoan A, Cosma C, Sciacovelli L, et al. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med. 2020;58:1081–1088.
  • Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020;26(8):1193–1195.
  • Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92:7226–7231.
  • Montesinos I, Gruson D, Kabamba B, et al. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020;128:104413.
  • Jerome B. Surface effects and anchoring in liquid crystals. Reports Prog Phys. 1991;54(3):391–451.
  • Tadokoro C, Araya S, Okubo H, et al. Polarization observations of adsorption behavior of fatty acids using optical anisotropy of liquid crystal. Tribol Lett. 2016;64(2):1–9.
  • Pan RP, Hsieh CF, Pan CL, et al. Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range. J Appl Phys. 2008;103(9):093523.
  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279(5359):2077–2080.
  • Tingey ML, Wilyana S, Snodgrass EJ, et al. Imaging of affinity microcontact printed proteins by using liquid crystals. Langmuir. 2004;20(16):6818–6826.
  • Hu QZ, Jang CH. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Colloid Surf B-Biointerfaces. 2011;88(2):622–626.
  • Han GR, Jang CH. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations. Talanta. 2014;128:44–50.
  • Zhong S, Jang CH. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces. Soft Matter. 2015;11(35):6999–7004.
  • Liu J, Hu Q, Qi L, et al. Liquid crystal-based sensing platform for detection of Pb2+ assisted by DNAzyme and rolling circle amplification. J Hazard Mater. 2020;400:123218.
  • Yang X, Li H, Zhao X, et al. A novel, label-free liquid crystal biosensor for Parkinson’s disease related alpha-synuclein. Chem Commun. 2020;56(40):5441–5444.
  • An Z, Jang CH. Nanoparticle-assisted optical sensor for clinical diagnosis of tuberculosis. Microchem J. 2019;147:941–947.
  • An Z, Jang CH. Label-free optical detection of aflatoxin by using a liquid crystal-based immunosensor. Microchem J. 2018;142:335–342.
  • Kim HJ, Rim J, Jang CH. Liquid-crystal-based immunosensor for diagnosis of tuberculosis in clinical specimens. ACS Appl Mater Interfaces. 2017;9(25):21209–21215.
  • Kim HJ, Rim J, Jang CH. Diagnosis of tuberculosis using a liquid crystal-based optical sensor. Macromol Res. 2016;24(2):123–130.
  • Hu QZ, Jang CH. Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces. J Mater Sci. 2012;47(2):969–975.
  • Han GR, Jang CH. A simple strategy for detecting synthetic polymers on solid surfaces using liquid crystal. Colloid Polym Sci. 2013;291(11):2689–2696.
  • van Kranenburg H, Lodder C. Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater Sci Eng R-Reports. 1994;11(7):295–354.
  • Gupta VK, Abbott NL. Uniform anchoring of nematic liquid crystals on self-assembled monolayers formed from alkanethiols on obliquely deposited films of gold. Langmuir. 1996;12(10):2587–2593.
  • Han GR, Jang CH. Measuring ligand-receptor binding events on polymeric surfaces with periodic wave patterns using liquid crystals. Colloid Surf B-Biointerfaces. 2012;94:89–94.
  • Han GR, Song YJ, Jang CH. Label-free detection of viruses on a polymeric surface using liquid crystals. Colloid Surf B-Biointerfaces. 2014;116:147–152.
  • Park SJ, Jang CH. Using liquid crystals to detect DNA hybridization on polymeric surfaces with continuous wavy features. Nanotechnology. 2010;21(42):425502.
  • Hu QZ, Jang CH. Real-time and sensitive detection of lipase using liquid crystal droplet patterns supported on solid surfaces. Liq Cryst. 2014;41(4):597–602.
  • An Z, Jang CH. Fabrication of liquid crystal droplet patterns for monitoring aldehyde vapors. Chempluschem. 2019;84(10):1554–1559.
  • Clare BH, Abbott NL. Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events. Langmuir. 2005;21:6451–6461.
  • Häkkinen H. The gold–sulfur interface at the nanoscale. Nat Chem. 2012;4(6):443–455.
  • Pacchioni G. A not-so-strong bond. Nat Rev Mater. 2019;4(4):226.
  • Follonier S, Miller WJW, Abbott NL, et al. Characterization of the molecular orientation of self-assembled monolayers of alkanethiols on obliquely deposited gold films by using infrared-visible sum-frequency spectroscopy. Langmuir. 2003;19(25):10501–10509.
  • Bart J, Tiggelaar R, Yang M, et al. Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip. 2009;9(24):3481–3488.
  • Skaife JJ, Abbott NL. Influence of molecular-level interactions on the orientations of liquid crystals supported on nanostructured surfaces presenting specifically bound proteins. Langmuir. 2001;17(18):5595–5604.
  • Han GR, Jang CH. Liquid crystal sensor for the detection of acetylcholine using acetylcholinesterase immobilized on a nanostructured polymeric surface. Colloid Polym Sci. 2015;293(10):2771–2779.
  • Kim SR, Abbott NL. Manipulation of the orientational response of liquid crystals to proteins specifically bound to covalently immobilized and mechanically sheared films of functionalized bovine serum albumin. Langmuir. 2002;18(13):5269–5276.
  • Kang S, Yang M, He S, et al. A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation. Nat Commun. 2021;12(1):1–11.
  • Demonbreun AR, Sancilio A, Velez MP, et al. Comparison of IgG and neutralizing antibody responses after one or two doses of COVID-19 mRNA vaccine in previously infected and uninfected individuals. EClinicalMedicine. 2021;38:101018.
  • Zeng W, Ma H, Ding C, et al. Characterization of SARS-CoV-2-specific antibodies in COVID-19 patients reveals highly potent neutralizing IgA. Signal Transduct Target Ther. 2021;6(1):1–3.
  • Liu H, Dai E, Xiao R, et al. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens Actuator B-Chem. 2021;329:129196.
  • Rashed MZ, Kopechek JA, Priddy MC, et al. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens Bioelectron. 2021;171:112709.
  • Funari R, Chu KY, Shen AQ. Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosens Bioelectron. 2020;169:112578.
  • Xu Y, Rather AM, Song S, et al. Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Rep Phys Sci. 2020;1(12):100276.
  • Nandi R, Pal SK. Liquid crystal based sensing device using a smartphone. Analyst. 2018;143(5):1046–1052.
  • Huang HM, Chuang EY, Chen FL, et al. Color-indicating, label-free, dye-doped liquid crystal organic-polymer-based-bioinspired sensor for biomolecule immunodetection. Polymers. 2020;12(10):2294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.