321
Views
6
CrossRef citations to date
0
Altmetric
Articles

Tunable liquid crystal metamaterial filter with polarization-insensitive characteristic

, , , , , ORCID Icon & show all
Pages 1338-1346 | Received 19 Sep 2021, Accepted 16 Jan 2022, Published online: 31 Jan 2022

References

  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–4187.
  • Lv J-F, Ding C, Meng F-Y, et al. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liq Cryst. 2021;1–10. DOI:10.1080/02678292.2021.1876935.
  • Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010 Jul 14;10(7):2342–2348.
  • Wang W, Yan F, Tan S, et al. Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design. Photonics Res. 2020;8(4):519.
  • Liu R, Ji C, Mock JJ, et al. Broadband ground-plane cloak. Science. 2009;323(5912):366–369.
  • Silalahi HM, Chen Y-P, Shih Y-H, et al. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021;9(10):1970.
  • Ashalley E, Acheampong K, Besteiro L, et al. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photonics Res. 2020;8(7):1213.
  • Fu W, Han Y, Li J, et al. Polarization insensitive wide-angle triple-band metamaterial bandpass filter. J Phys D Appl Phys. 2016;49(28):285110.
  • Wang S, Xia L, and Mao H, et al. Terahertz biosensing based on a polarization-insensitive metamaterial. IEEE Photonics Technology Letters; 2016;28(9):986-989. doi: 10.1109/lpt.2016.2522473.
  • Li H-P, Fu W-Y, Shen X-P, et al. Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter. Chin Phys B. 2017;26(12):127801.
  • Ren Z, Liu R, Zhang Y, et al. Transmission reflection selective ultranarrow-band metamaterial filter based on electromagnetically induced transparency structure. Opt Commun. 2021;497. doi:10.1016/j.optcom.2021.127159.
  • Jia XQ, Chen Q, An Q, et al. Low-pass spatial filter based on 3D metamaterial rasorber with wideband absorption at high frequency. AIP Adv. 2020;10(5):055018.
  • Prakash Pitchappa CPH. Navab Singh, and Cheng kuo Lee. electrostatically switchable MEMS terahertz metamaterial with polarization-insensitive characteristics. 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Singapore. 2015.
  • Huang D, Poutrina E, Smith DR. Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies. Appl Phys Lett. 2010;96(10):104104.
  • Xu W, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber. Appl Phys Lett. 2013;103(3). doi:10.1063/1.4813750
  • Chen X, Fan W. Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial. Opt Mater Express. 2016;6(8):2607.
  • Grebenchukov AN, Zaitsev AD, Khodzitskiy MK. Optically controlled terahertz filter based on graphene and cross-like metasurface. Nanosystems. 2017;8(3):342–346.
  • Huang H, Xia H, Guo Z, et al. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial. Opt Commun. 2018;424:163–169.
  • Zaitsev A, Grebenchukov A, Khodzitsky M. Tunable THz graphene filter based on cross-in-square-shaped resonators metasurface. Photonics. 2019;6(4):119.
  • Huang H, Xia H, Li H. Polarization-insensitive complementary metamaterial structure based on graphene for independently tuning multiple transparency windows. Chin Phys B. 2020;29(11):114203.
  • Huang W, Luo X, Lu Y, et al. Ultra-broadband terahertz bandpass filter with dynamically tunable attenuation based on a graphene–metal hybrid metasurface. Appl Opt. 2021;60(22):6366.
  • Nouman MT, Hwang JH, Faiyaz M, et al. Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Opt Express. 2018 May 14;26(10):12922–12929.
  • Chen Y, Cheng J, Liang C, et al. Switchable terahertz band-pass/band-stop filter enabled by hybrid vanadium dioxide metamaterial. Adv Condens Matter Phys. 2020;2020:1–6.
  • Chen Y, Li J, He C, et al. Enhancement of high transmittance and broad bandwidth terahertz metamaterial filter. Opt Mater. 2021;115. doi:10.1016/j.optmat.2021.111029.
  • Li ZW, Li JS. Switchable terahertz metasurface with polarization conversion and filtering functions. Appl Opt. 2021 Mar 10;60(8):2450–2454.
  • Zhang J, Yang J, Schell M, et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure. Opt Lett. 2019 Aug 1;44(15):3653–3656. PubMed PMID: 31368935.
  • Lee YU, Kim J, Wu JW. Electro-optic switching in metamaterial by liquid crystal. Nano Converg. 2015;2(1):23.
  • Wang J, Tian H, Wang Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. Opt Express. 2018 Mar 5;26(5):5769–5776.
  • Su H, Wang H, Zhao H, et al. Liquid-crystal-based electrically tuned electromagnetically induced transparency metasurface switch. Sci Rep. 2017 Dec 12;7(1):17378.
  • Lv J-F, Ding C, Zhu Z, et al. Tunable liquid crystal frequency selective surface with the compact unit cell, large tuning range, and the passband of flat-top and sharp roll-off. J Phys D Appl Phys. 2021;54(31):315001.
  • Yang D-K. Fundamentals of liquid crystal devices. USA: John Wiley & Sons; 2014. p. 113–120.
  • Al-Joumayly M, Behdad N. A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Trans Antennas Propag. 2009;57(2):452–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.