302
Views
1
CrossRef citations to date
0
Altmetric
Articles

Broadband reflective films with temperature response combined with thermochromic materials

, ORCID Icon &
Pages 1633-1642 | Received 14 Jan 2022, Accepted 28 Feb 2022, Published online: 16 Mar 2022

References

  • Relaix S, Bourgerette C, Mitov M. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal. Appl Phys Lett. 2006;89(25):251907.
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol–acrylate chemistry. Angew Chem Int Ed Engl. 2019;58(20):6698–6702.
  • Zou JY, Zhan T, Xiong JG, et al. Broadband wide-view Pancharatnam–Berry phase deflector. Opt Express. 2020;28(4):4921–4927.
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469.
  • Azens A, Granqvist CG. Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem. 2003;7(2):64–68.
  • Choi H, Kim J, Nishimura S. Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors. Advanced Materials. 2010;22(24):2680–2684.
  • Zhang TH, Cong YH, Zhang BY, et al. Multistable polymer stabilised cholesteric liquid crystal: exceeding reflection limit in visible region. Liq Cryst. 2014;41(12):1778–1782.
  • Abdulhalim I, Zourob M, Lakhtakia A. Surface plasmon resonance for biosensing: a mini-review. Electromagnetics. 2008;28(3):214–242.
  • White TJ, Natarajan L, Bunning TJ. Contribution of monomer functionality and additives to polymerization kinetics and liquid crystal phase separation in acrylate-based polymer-dispersed liquid crystals (PDLCs). Liq Cryst. 2007;34(12):1377–1385.
  • Pieraccini S, Masiero S, Ferrarini A, et al. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem Soc Rev. 2011;40(1):258–271.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276.
  • Ke YJ, Zhou CZ, Zhou Y. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv Funct Mater. 2018;28(22):1800113.
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. J Appl Phys. 2001;90(4):1730–1734.
  • Tondiglia VT, Natarajan LV, Bailey CA, et al. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J Appl Phys. 2011;110(5):053109.
  • Fuh AY-G, Shin ZB, Yang CH, et al. Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films. Liq Cryst. 2016;43(12):1784–1790.
  • Sharma V, Kumar P, Chinky, et al. Effect of nano particles on electro optic properties of polymer dispersed liquid crystal in normal mode. 20192019130002. AIP Conf. Proc. 2019;2142(1):130002. Adv Basic Sci
  • Jiang TK, Mao ZP, Qi YL, et al. The effect of two different uv absorbers combined with antioxidants on uv resistance of hdpe. Polym Adv Technol. 2021;5486:1–11.
  • Xiang J, Li YN, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018.
  • Simoncelli S, Li Y, Cortes E, et al. Nanoscale control of molecular self-assembly induced by plasmonic hot-electron dynamics. ACS Nano. 2018;12(3):2184–2192.
  • Zhang XT, Shi WT, Han R, et al. Self-diffusion method for broadband reflection in polymer-stabilized cholesteric liquid crystal films. Liq Cryst. 2021;1–10. DOI:10.1080/02678292.2021.1979114.
  • Li FF, Zhao YZ, Gao H, et al. Broadband reflection prepared by loading chiral dopants in white carbon black. Liq Cryst. 2021;48(13):1840–1849.
  • Li Y, Wu TX, Wu S-T. Design optimization of reflective polarizers for lcd backlight recycling. J Disp Technol. 2009;5(8):335–340.
  • Wang FF, Song P, Yang H, et al. Thermally bandwidth-controllable reflective liquid crystal film from rupture and self-assembly of hydrogen bonds. Liq Cryst. 2016;43(12):1732–1738.
  • Zhang DD, Cao H, Duan MY, et al. Effect of monomer composition on the performance of polymer-stabilized liquid crystals with two-step photopolymerization. J Polym Sci B Polym Phys. 2019;57(17):1126–1132.
  • Li E, Zhang DD, Cao H, et al. Preparation of liquid crystal film capable of shielding visible light band by two-phase coexistence. J Polym Sci. 2020;58(4):599–606.
  • Deng XB, Zhao Y, Gao H, et al. Thermally bandwidth-controllable reflective liquid crystal films prepared by doping nano-sized electrospun fibers. Liq Cryst. 2021;48(11):1525–1533.
  • Zhang HM, Yu P, Zhong TJ, et al. Preparation of chiral polymer/cholesteric liquid crystals composite films with broadband reflective capability for smart windows and thermal management of buildings. Opt Mater. 2021;121:111611.
  • Mitov M, Boudet A, Sopéna P. From selective to wide-band light reflection: a simple thermal diffusion in a glassy cholesteric liquid crystal. Eur Phys J B. 1999;8(3):327–330.
  • Chen XW, Wang L, Chen YJ, et al. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound. Chem Commun. 2014;50(6):691–694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.