179
Views
6
CrossRef citations to date
0
Altmetric
Article

Rheological behaviour and antibacterial activities of MWCNTs/ lyotropic liquid crystals based nanocolloids

, , , , &
Pages 1822-1840 | Received 08 Feb 2022, Accepted 23 Apr 2022, Published online: 15 May 2022

References

  • Neto AMF, Salinas SA. The physics of lyotropic liquid crystals: phase transitions and structural properties. Oxford (UK): Oxford University Press; 2005.
  • Dischinger SM, Rosenblum J, Noble RD, et al. Application of lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: selectivity and implications for treatment. J Membr Sci. 2017;543:319–327.
  • Shukla RK, Chamoli P, Raina KK. Lyotropic liquid crystalline nano templates for synthesis of ZnS cogwheels. J Mol Liq. 2019;283:667–673.
  • Sasi R, Sarojam S, Devaki SJ. High performing biobased ionic liquid crystal electrolytes for supercapacitors. ACS Sustain Chem Eng. 2016;4(6):3535–3543.
  • Mezzenga R, Seddon JM, Drummond CJ, et al. Nature-Inspired design and application of lipidic lyotropic liquid crystals. Adv Mater. 2019;31(35):1900818. DOI:10.1002/adma.201900818.
  • Barai M, Manna E, Sultana H, et al. Micro-Structural investigations on oppositely charged mixed surfactant gels with potential dermal applications. Sci Rep. 2021;11(1):15527. DOI:10.1038/s41598-021-94777-2.
  • Iwai H, Fukasawa J, Suzuki T. A liquid crystal application in skin care cosmetics. Int J Cosmet Sci. 1998;20(2):87–102.
  • Guo C, Wang J, Cao F, et al. Lyotropic liquid crystal systems in drug delivery. Drug Deliv Today. 2010;15(23–24):1032–1040.
  • Tan SN, Fornasiero D, Sedev R, et al. The role of surfactant structure on foam behaviour. Colloid Surf A: Physicochem Eng Asp. 2005;263(1–3):233–238. DOI:10.1016/j.colsurfa.2004.12.060.
  • Chaisalee R, Soontravanich S, Yanumet N. Mechanism of antifoam behavior of solutions of nonionic surfactants above the cloud point. J Surfact Deterg. 2003;6(4):345–351.
  • Zhou C, Wang Y. Structure-Activity relationship of cationic surfactants as antimicrobial agents. Curr Opin Colloid Interface Sci. 2020;45:28–43.
  • Cutter CN, Dorsa WJ, Rodriguez-Morales S, et al. Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. J Food Prot. 2000;63(5):53–600. DOI:10.4315/0362-028X-63.5.593.
  • Malek NANN, Ramli NI. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings. Appl Clay Sci. 2015;109-110:8–14.
  • Wu H, Yan Y, Feng J, et al. Cetylpyridinium bromide/montmorillonite-graphene oxide composite with good antibacterial activity. Biomed Mater. 2020;15(5):055002. DOI:10.1088/1748-605X/ab8440.
  • Dubovoy V, Nawrocki S, Verma G, et al. Synthesis, characterization, and investigation of the antimicrobial activity of cetylpyridinium tetrachlorozincate. ACS Omega. 2020;5(18):10359–10365. DOI:10.1021/acsomega.0c00131.
  • Luo Y, Liang W, Ma W, et al. Carbanol-Derived cationic surfactants enabling the superior antibacterial activity of single-walled carbon nanotubes. Nanotechnology. 2020;31(26):265603. DOI:10.1088/1361-6528/ab7aa4.
  • Amar-Yuli I, Wachtel E, Shoshan EB, et al. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir. 2007;23(7):3637–3645. DOI:10.1021/la062851b.
  • Mendez NAN, Barreda CTQ, Vega AF, et al. Design and development of pharmaceutical microprocesses in the production of nanomedicine. In: Andronescu E, Grumezescu A, editors. Nanostructures for oral medicine. Amsterdam: Elsevier; 2017. p. 669–697.
  • Saegeman VSM, Ectors NL, Lismont D, et al. Short-And long-term bacterial inhibiting effect of high concentrations of glycerol used in the preservation of skin allografts. Burns. 2008;34(2):205–211. DOI:10.1016/j.burns.2007.02.009.
  • Bindhu MR, Umadevi M. Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta a Mol Biomol Spectrosc. 2014;128:37–45.
  • Lalabadi MA, Ehsani A, Divband B, et al. Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. 2019;9(1):17439. DOI:10.1038/s41598-019-54025-0.
  • Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep. 2020;10(1):16680.
  • Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49(2):137–152.
  • Azizi-Lalabadi M, Hashemi H, Feng J, et al. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci. 2020;284:102250.
  • Zakri C. Carbon nanotubes and liquid crystalline phases. Liq Cryst Today. 2007;16(1):1–11.
  • Lagerwall J, Scalia G, Haluska M, et al. Nanotube alignment using lyotropic liquid crystals. Adv Mater. 2007;19(3):359–364. DOI:10.1002/adma.200600889.
  • Huang SR, Wu CF, Wang CA, et al. Coherent stacking of carbon nanotubes and polymer lamellar crystals: towards oriented hybrid arrays within network valley domains. J Polymer. 2018;140:10–21.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Huang N. Rheological characterization of pharmaceutical and cosmetic formulations for cutaneous applications. Curr Pharm Des. 2019;25(21):2349–2363.
  • Tran N, Hocquet M, Eon B, et al. Non-Lamellar lyotropic liquid crystalline nanoparticles enhances the antibacterial effects of rifampicin against Staphylococcus aureus. J Colloid Interface Sci. 2018;519:107–118.
  • Lange H, Taillandier P, Riba JP. Effect of high shear stress on microbial viability. J Chem Technol Biotechnol. 2001;76(5):501–505.
  • Jaju SJ, Kumaran V. Structure-Rheology relationship in a sheared lamellar fluid. Phys Rev E. 2016;93(3):032609.
  • Kodama H, Doi M. Shear-Induced instability of the lamellar phase of a block copolymer. Macromolecules. 1996;29(7):2652–2658.
  • Fujii S, Yamamoto Y. Dynamic orientation transition of the lyotropic lamellar phase at high shear rate. Soft Matter. 2015;11(48):9330–9341.
  • Kawabata Y, Brabury R, Kugizaki S, et al. Effect of interlamellar interactions on shear induced multilamellar vesicle formation. J Chem Phys. 2017;147(3):034905. DOI:10.1063/1.4994563.
  • Cordobes F, Franco JM, Gallegos C. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol/water/heptane systems. Grasasaceites. 2005;56(2):96–105.
  • Ichiara K, Sugahara T, Akamatsu M, et al. Rheology of α- Gel formed by amino acid-based surfactant with long-chain alcohol: effects of inorganic salt concentration. Langmuir. 2021;37(23):7032–7038. DOI:10.1021/acs.langmuir.1c00626.
  • Porcar L, Warr GG, Hamilton WA, et al. Shear-Induced collapse in a lyotropic lamellar phase. Phys Rev Let. 2005;95(7):078302. DOI:10.1103/PhysRevLett.95.078302.
  • Dierking I, Al-Zangana S. Lyotropic liquid crystals phases form anisotropic nanomaterials. Nanomaterials. 2017;7(10):305.
  • Weiss V, Thiruvengadathan R, Regev O. Preparation and characterization of a carbon nanotube−lyotropic liquid crystal composite. Langmuir. 2006;22(3):854–856.
  • Schymura S, Dölle S, Yamamoto J, et al. Filament formation in carbon nanotube-doped lyotropic liquid crystals. Soft Matter. 2011;7(6):2663–2667. DOI:10.1039/c0sm01225d.
  • Xin X, Li H, Kalwarczyk E, et al. Single-Walled carbon nanotube/lyotropic liquid crystal hybrid materials fabricated by a phase separation method in the presence of polyelectrolyte. Langmuir. 2010;26(11):8821–8828. DOI:10.1021/la101032d.
  • Shukla RK, Raina KK. Effect of viscosity, pH and physicochemical parameters of solvent on the aggregation and dielectric behavior of lyotropic liquid crystals binary mixtures. J Mol Liq. 2018;250:71–79.
  • Kaur M, Nagpal M, Singh M, et al. Improved antibacterial activity of topical gel-based on nanosponge carrier of cinnamon oil. Bioimpacts. 2021;11(1):23–31. DOI:10.34172/bi.2021.04.
  • Hindler JF, Jorgensen JK. Antimicrobial susceptibility testing: procedures in antimicrobial susceptibility testing. In: Mahon C, Lehman D, Manuselis G, editors. Textbook of diagnostic microbiology. Beijing: Elsevier; 2007. p. 319–353.
  • Rosevear FB. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;31(12):628–639.
  • Munoz J, Guerrero A. Flow behavior of sucrose stearate/water systems. J Am Oil Chem Soc. 1992;69:660–666.
  • Bragg S. Focal conic structures. Trans Faraday Soc. 1933;29(140):1056–1060.
  • Jiang W, Yu B, Liu W, et al. Carbon nanotubes incorporated within lyotropic hexagonal liquid crystal formed in room-temperature ionic liquids. Langmuir. 2007;23(16):8549–8553. DOI:10.1021/la700921w.
  • Wang W, Efrima S, Regev O. Directing silver nanoparticles into colloid-surfactant lyotropic lamellar systems. J Phys Chem B. 1999;103(27):5613–5620.
  • Sui Z, Chen X, Wang L, et al. Study on the doping and interactions of metal nanoparticles in the lyotropic liquid crystals. Acta Physico-Chmica Sinica. 2006;22(6):737–743. DOI:10.1016/S1872-1508(06)60030-2.
  • Oton E, Escolano JM, Quintana X, et al. Aligning of lyotropic crystals with silicon oxides. Liq Cryst. 2015;42(8):1069–1075. DOI:10.1080/02678292.2015.1024767.
  • Constantin D, Davidson P. Lamellar L α mesophases doped with inorganic nanoparticles. Chem Phys Chem. 2014;15(7):1270–1282.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18(25):2890–2898.
  • Risi CLS, Neto AMF, Fernandes PRG, et al. Shear viscosity and rheology of ternary and quaternary lyotropic liquid crystals in discotic and calamitic nematic phases. Rheol Acta. 2015;54(6):529–543. DOI:10.1007/s00397-015-0850-2.
  • Laun HM, Bung R, Hess S. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow. J Rheol. 1992;36(4):743–787.
  • Koschoreck S, Fujii S, Lindner P, et al. Multilamellar vesicles (“onions”) under shear quench: pathway of discontinuous size growth. Rheol Acta. 2009;48(2):231–240. DOI:10.1007/s00397-008-0327-7.
  • Turner MS, Cates ME. Flow-Induced phase transitions in rod-like micelles. J Phys Cond Matter. 1992;4:3719.
  • Singh P, Chamoli P, Sachdev S, et al. Structural, optical and rheological behavior investigations of graphene oxide/glycerol based lyotropic liquid crystalline phases. Appl Surf Sci. 2020;509:144710.
  • Berret JF, Porte G, Decruppe JP. Inhomogeneous shear flows of wormlike micelles:ma master dynamic phase diagram. Phys Rev E. 1997;55(2):1668.
  • Gomati R, Appell J, Bassereau P, et al. Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine. J Phys Chem. 1987;91(24):6203–6210. DOI:10.1021/j100308a028.
  • Berret JF, Corrales RG, Oberdisse J, et al. Flow-Structure relationship of shear thickening surfactant solution. Europhys Lett. 1998;41(6):677–682. DOI:10.1209/epl/i1998-00213-1.
  • Gouveia L, Muller AJ. The effect of NaCl addition on the rheological behavior of cetyltrimethylammonium p-toluenesulfonate (CTAT) aqueous solutions and their mixtures with hydrophobically modified polyacrylamide aqueous solutions. Rheol Acta. 2009;48(2):163–175.
  • Ye F, Zhu W, Jiang W, et al. Influence of surfactants on shear thickening behavior in concentrated polymer dispersion. J Nanopart Res. 2013;15(12):2122. DOI:10.1007/s11051-013-2122-3.
  • Zhang L, Kang W, Xu D, et al. The rheological characteristics for the mixtures of cationic surfactant and anionic–nonionic surfactants: the role of ethylene oxide moieties. RSC Adv. 2017;7(22):13032–13040. DOI:10.1039/C6RA28071D.
  • Cross MM. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci. 1965;20(5):417–437.
  • Han W, Zhao T, Wang X. Steady shear viscosity and oscillatory complex viscosity of poly(p-phenylene terephthalamide) solutions in sulfuric acid. Rheol Acta. 2016;55(3):257–266.
  • Partal P, Kowalski AJ, Machin D, et al. Rheology and microstructural transitions in the lamellar phase of a cationic surfactant. Langmuir. 2001;17:1331–1337.
  • Chen DTN, Wen Q, Janmey PA, et al. Rheology of soft materials. Annu Rev Condens Matter Phys. 2010;1(1):301–322. DOI:10.1146/annurev-conmatphys-070909-104120.
  • Hartmann V, Cressely R. Linear and non-linear rheology of a wormlike micellar system in presence of sodium tosylate. Rheol Acta. 1998;37(2):115–121.
  • Saito T, Ishii R, Akamatsu M, et al. Effects of domain size on viscosity of α-gel (α-form hydrated crystal) prepared from eco-friendly cationic surfactant. J Oleo Sci. 2020;69(12):1561–1567. DOI:10.5650/jos.ess20213.
  • Mayer C, Asnacios S, Bourgaux C, et al. Effects of shear on a lyotropic lamellar phases. Mol Cryst Liq Cryst Sci Tech Sec a Mol Cryst Liq Cryst. 1999;332(1):531–538. DOI:10.1080/10587259908023799.
  • Mayer C, Asnacios S, Kleman M. Universal properties of lamellar systems under weak shear. Eur Phys J E. 2001;6(3):245–253.
  • Roux D, Nallet F, Diat O. Rheology of lyotropic lamellar phases. Europhys Lett. 1993;24(1):53.
  • Medronho B, Rodrigues M, Miguel MG, et al. Shear-Induced defect formation in a nonionic lamellar phase. Langmuir. 2010;26(3):11304–11313. DOI:10.1021/la100627z.
  • Pamies R, Espejo C, Carrion FJ, et al. Rheological behavior of multiwalled carbon nanotube-imidazolium tosylate ionic liquid dispersions. J Rheol. 2017;61(2):279. DOI:10.1122/1.4975108.
  • Matsumoto A, Giudice FD, Rotrattanadumrong R, et al. Rheological scaling of ionic-liquid-based polyelectrolytes in ionic liquid solutions. Macromolecules. 2019;52(7):2759–2771. DOI:10.1021/acs.macromol.8b02544.
  • Georgieva GS, Anachkov SE, Lieberwirth I, et al. Synergistic growth of giant wormlike micelles in ternary mixed surfactant solutions: effect of octanoic acid. Langmuir. 2016;32(48):12885–12893. DOI:10.1021/acs.langmuir.6b03955.
  • Abbasi S, Carreau PJ, Derdouri A, et al. Rheological properties and percolation in suspensions of multiwalled carbon nanotube in polycarbonate. Rheol Acta. 2009;48(9):943–959. DOI:10.1007/s00397-009-0375-7.
  • Rolere S, Cartault M, Sainte-Beuve J, et al. A rheological method exploiting Cole-Cole plot allows gels quantification in natural rubber. Polym Test. 2017;61:378–385.
  • Alberola N, Bergeret A. Physical modeling of the interphase in amorphous thermoplastic/glass bead composites. Polym Compos. 1994;15(6):442–452.
  • Larson RG, Wei Y. A review of thixotropy and its rheological modeling. J Rheol. 2019;63(3):477.
  • Fazilati M, Ingelsten S, Wojno S, et al. Thixotropy of cellulose nanocrystal suspensions. J Rheol. 2021;65(5):1035. DOI:10.1122/8.0000281.
  • Yue X, Zhang X, Wang C, et al. A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. J Mater Chem B. 2021;9(38):8121–8137. DOI:10.1039/D1TB01201K.
  • Balasubramaniam B, Prateek, Ranjan S, et al. Antibacterial and antiviral functional materials: chemistry and biological activity towards tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci. 2021;4(1):8–54. DOI:10.1021/acsptsci.0c00174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.