1,199
Views
3
CrossRef citations to date
0
Altmetric
Article

Accurate modelling of the optics of high resolution liquid crystal devices: a reconfigurable liquid crystal grating

, & ORCID Icon
Pages 1797-1808 | Received 17 Mar 2022, Accepted 23 Apr 2022, Published online: 05 May 2022

References

  • Chen H-W, Lee J-H, Lin B-Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci Appl. 2018;7:17168.
  • Pivnenko M, Li K, Chu D. Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth. Opt Express. 2021;29(16):24614.
  • Collings N, Davey T, Christmas J, et al. The applications and technology of phase-only liquid crystal on silicon devices. J Display Technol. 2011;7(3):112–119. DOI:10.1109/JDT.2010.2049337
  • Wang M, Zong L, Mao L, et al. LCOS SLM study and its application in wavelength selective switch. Photonics. 2017;4(4):22. DOI:10.3390/photonics4020022
  • Robertson B, Yang H, Redmond MM, et al. Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch. J Lightwave Technol. 2014;32(3):402–410. DOI:10.1109/JLT.2013.2293919
  • Li L, Zhang R, Zhao Z, et al. High-capacity free-space optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams. Sci Rep. 2017;7(1):17427. DOI:10.1038/s41598-017-17580-y
  • Willner AE, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links. Nanophotonics. 2020;10(1):435.
  • Li L, Shi S, Kim J, et al. Color-selective geometric-phase lenses for focusing and imaging based on liquid crystal polymer films. Opt Express. 2022;30(2):2487–2502. DOI:10.1364/OE.444578
  • Chen P, Wei B-Y, Hu W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Matter. 2022;32:1903665.
  • He Z, Yin K, Wu S-T. Miniature planar telescopes for efficient, wide-angle, high-precision beam steering. Light Sci Appl. 2021;10:134.
  • Li Y. High-precision beam angle expander based on polymeric liquid crystal polarization lenses for LiDAR applications. Crystals. 2022;12:349.
  • Yin K, He Z, Xiong J, et al. Virtual reality and augmented reality displays: advances and future perspectives. J Phys Photonics. 2021;3:022010.
  • Deo P, Mirshekar-Syahkal D, Seddon L, et al. Microstrip device for broadband (15-65 GHz) measurement of dielectric properties of nematic liquid crystals. IEEE Trans Microw Theory Tech. 2015;63(4):1388–1398. DOI:10.1109/TMTT.2015.2407328
  • Deo P, Mirshekar-Syahkal D, Seddon L, et al. Beam steering 60 GHz slot antenna array using liquid crystal phase shifter. Proceedings of the 8th European Conference on Antenna and Propagation EuCAP 2014; 2014 Apr 6–11; The Hague (The Nederlands). p. 1005–1007.
  • Li J, Chu D. Liquid crystal-based enclosed coplanar waveguide phase shifter for 54–66 GHz applications. Crystals. 2019;9(12):650.
  • Reese R, Jost M, Polat E, et al. A millimeter-wave beam-steering lens antenna with reconfigurable aperture using liquid crystal. IEEE Trans Antennas Propag. 2019;67(8):5313–5324. DOI:10.1109/TAP.2019.2918474
  • Sasaki T, Asano T, Sakamoto M, et al. Subwavelength liquid crystal gratings for polarization-independent phase shifts in the terahertz spectral range. Opt Mater Express. 2020;10(2):240–248. DOI:10.1364/OME.10.000240
  • James R, Willman E, Fernández FA, et al. Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order. IEEE Trans Electron Devices. 2006;53(7):1575–1582. DOI:10.1109/TED.2006.876039
  • Willman E, Fernández FA, James R, et al. Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory. IEEE Trans Electron Devices. 2007;54(10):2630–2637. DOI:10.1109/TED.2007.904369
  • James R, Willman E, Fernández FA, et al. Computer modeling of liquid crystal hydrodynamics. IEEE Trans Magn. 2008;44(6):814–817. DOI:10.1109/TMAG.2007.916029
  • Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model Simul. 2011;9:686–710.
  • Merewether DE, Fisher R, Smith FW. On implementing a numeric Huygens’s source scheme in a finite difference program to illuminate scattering bodies. IEEE Trans Nucl Sci. 1980;27(6):1829–1833.
  • Umashankar KR, Taflove A. A novel method to analyze electromagnetic scattering of complex objects. IEEE Trans Electromagn Compat. 1982;24(4):397–405.
  • Taflove A, Hagness SC. Computational electrodynamics. 3rd ed. Boston (MA): Artech House; 2005.
  • Rumpf RC. Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain. Prog Electromagn Res B. 2012;36:221–248.
  • Rumpf RC, Garcia CR, Berry EA, et al. Finite-Difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects. Prog Electromagn Res B. 2014;61:55–67.
  • Zola RS, Bisoyi HK, Wang H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. J Adv Mater. 2019;31:1806172.
  • Habibpourmoghadam A, Wolfram L, Jahanbakhsh F, et al. Tunable diffraction gratings in copolymer network liquid crystals driven with interdigitated electrodes. ACS Appl Electron Mater. 2019;1:2574–2584.
  • James R, Gardner MC, Fernández FA, et al. 3D modelling of high resolution devices. Mol Cryst Liq Cryst. 2006;450:105–305.
  • James R, Fernández FA, Day SE, et al. Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering. J Opt Soc Am A. 2007;24(8):2464–2473. DOI:10.1364/JOSAA.24.002464
  • Georgiou AG, Komarčević M, Wilkinson TD, et al. Hologram optimisation using liquid crystal modelling. Mol Cryst Liq Cryst. 2005;434:183–511.
  • Lu T, Pivnenko M, Robertson B, et al. Pixel-Level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device. Appl Opt. 2015;54(19):5903–5910. DOI:10.1364/AO.54.005903
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford (UK): Oxford University Press; 1993.
  • Willman EJ. Three dimensional finite element modelling of liquid crystal electro-hydrodynamics [ dissertation]. London (UK): University College London; 2008.
  • Willman EJ, Seddon L, Osman M, et al. Liquid crystal alignment induced by micron-scale patterned surfaces. Phys Rev E. 2014;89(5):052501. DOI:10.1103/PhysRevE.89.052501
  • Sonnet AM, Virga EG. Dynamics of dissipative ordered fluids. Phys Rev E. 2001;64:031705.
  • Sonnet AM, Maffettone PL, Virga EG. Continuum theory for liquid crystals with tensorial order. J Non-Newtonian Fluid Mech. 2004;119:51–59.
  • Qian T, Sheng P. Generalized hydrodynamic equations for nematic liquid crystals. Phys Rev E. 1998;58(6):7475–7485.
  • Albani M, Bernardi P. A numerical method based on the discretization of Maxwell equations in integral form. IEEE Trans Microw Theory Tech. 1974;22(4):446–450.
  • Champagne NJ, Berryman JG, Hm B. FDFD: a 3D Finite-difference frequency-domain code for electromagnetic induction tomography. J Comput Phys. 2001;170:830–848.
  • Yang M, Day SE, Fernández FA. (Poster 75): modelling the optics of high resolution liquid crystal devices by the finite differences in the frequency domain method. Proceeding of the International Workshop on Electromagnetics (iWEM 2017); 2017 May 30–June 1; London. p. 141–143.
  • Yang M, Nie Z, Day SE, et al. (Poster P3): accurate modelling of the optics of high resolution liquid crystal devices including diffractive effects. Abstracts of BLCS, The British Liquid Crystal Society Annual Conference; 2018 Mar 26–28; Manchester (UK). p. P3.
  • Chew WC, Weedon WH. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett. 1994;7:599–604.
  • Rappaport CM. Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE Microwave Guided Wave Lett. 1995;5:90–92.
  • Mittra R, Pekel U. A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves. IEEE Microwave Guided Wave Lett. 1995;5:84–86.
  • Sacks Z, Kingsland D, Lee R, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag. 1995;43:1460–1463.
  • Shin W, Fan S. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J Comput Phys. 2012;231:3406–3431.
  • Kitson SC, Geisow A. Bistable alignment of nematic liquid crystals around microscopic posts. Mol Cryst Liq Cryst. 2004;412:153–161.
  • Willman EJ, Fernández FA, James R, et al. Switching dynamics of a post aligned bistable liquid crystal device. IEEE/OSA J Display Technol. 2008;4(3):276–281. DOI:10.1109/JDT.2008.921780
  • Bryan-Brown GP, Wood EL, Brown CV, et al. Grating aligned bistable nematic device. SID Symp Dig Tech Pap. 1997;28:37–40.
  • Jones JC. 40.1: invited paper: the Zenithal bistable device: from concept to consumer. SID Symp Dig Tech Pap. 2007;38(1):1347–1350.
  • Parry-Jones LA, Elston SJ. Flexoelectric switching in a zenithally bistable nematic device. J Appl Phys. 2005;97:093515.
  • Jones SA, Day SE, Fernández FA, et al. Defect dynamics of bistable latching. Abstracts of BLCS-2019, the British Liquid Crystal Society Annual Conference; 2019 Apr 15–17; Leeds (UK).
  • Cummins PG, Dunmur DA, Laidler DA. The dielectric properties of Nematic 44′ n -pentylcyanobiphenyI. Mol Cryst Liq Cryst. 1975;30:109–123.
  • James R, Willman E, Ghannam R, et al. Hydrodynamics of fringing-field induced defects in nematic liquid crystals. J Appl Phys. 2021;130:134701.