1,274
Views
17
CrossRef citations to date
0
Altmetric
Articles

A convenient one-pot synthesis, and characterisation of the ω-bromo-1-(4-cyanobiphenyl-4’-yl) alkanes (CBnBr)

, & ORCID Icon
Pages 1706-1716 | Received 26 Mar 2022, Accepted 12 May 2022, Published online: 28 Jun 2022

References

  • Gray GW, Harrison KJ, Nash JA. New family of nematic liquid-crystals for displays. Electron Lett. 1973;9:130–131.
  • Dunmur DA. The magic of cyanobiphenyls: celebrity molecules. Liq Cryst. 2015;42:678–687.
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1 ’‘,7’‘-bis(4-cyanobiphenyl-4’- yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704.
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4:2635.
  • Zhu CH, Tuchband MR, Young A, et al. Resonant Carbon K-edge soft X-Ray scattering from lattice-free heliconical molecular ordering: soft dilative elasticity of the twist-bend liquid crystal phase. Phys Rev Lett. 2016;116:147803.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36:2096–2124.
  • Imrie CT, Henderson PA, Yeap G-Y. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36:755–777.
  • Paterson DA, Abberley JP, Harrison WT, et al. Cyanobiphenyl-Based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44:127–146.
  • Abberley JP, Jansze SM, Walker R, et al. Structure-Property relationships in twist-bend nematogens: the influence of terminal groups. Liq Cryst. 2017;44:68–83.
  • Mandle RJ, Archbold CT, Sarju JP, et al. The dependency of nematic and twist-bend mesophase formation on bend angle. Sci Rep. 2016;6:36682.
  • Arakawa Y, Komatsu K, Ishida Y, et al. Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron. 2021;81:131870.
  • Arakawa Y, Komatsu K, Tsuji H. Twist-Bend nematic liquid crystals based on thioether linkage. New J Chem. 2019;43:6786–6793.
  • Cruickshank E, Salamonczyk M, Pociecha D, et al. Sulfur-Linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46:1595–1609.
  • Panov VP, Vij JK, Mehl GH. Twist-Bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens. Liq Cryst. 2017;44:147–159.
  • Forsyth E, Paterson DA, Cruickshank E, et al. Liquid crystal dimers and the twist-bend nematic phase: on the role of spacers and terminal alkyl chains. J Molec Liq. 2020;320:114391.
  • Henderson PA, Imrie CT. Methylene-Linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38:1407–1414.
  • Mandle RJ, Goodby JW. Dependence of mesomorphic behaviour of methylene-linked dimers and the stability of the N-TB/N-X phase upon choice of mesogenic units and terminal chain length. Chem: Eur J. 2016;22:9366–9374.
  • Mandle RJ. Designing liquid-crystalline oligomers to exhibit twist-bend modulated nematic phases. Chem Rec. 2018;18:1341–1349.
  • Paterson DA, Gao M, Kim YK, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4 ‘-yloxy)-6-(4-cyanobiphenyl-4’-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12:6827–6840.
  • Paterson DA, Crawford CA, Pociecha D, et al. The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4 ‘-yl)-6-(4-alkyloxyanilinebenzylidene-4’-oxy)hexanes. Liq Cryst. 2018;45:2341–2351.
  • Walker R, Pociecha D, Strachan GJ, et al. Molecular curvature, specific intermolecular interactions and the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-6-(4-alkylanilinebenzylidene-4-oxy)hexanes (Cb6o.M). Soft Matter. 2019;15:3188–3197.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nature Commun. 2018;9:228.
  • Salamonczyk M, Vaupotic N, Pociecha D, et al. Multi-Level chirality in liquid crystals formed by achiral molecules. Nature Commun. 2019;10:1922.
  • Pociecha D, Vaupotic N, Majewska M, et al. Photonic bandgap in achiral liquid crystals-A twist on a twist. Adv Mater. 2021;33:2103288.
  • Cruickshank E, Anderson K, Storey JMD, et al. Helical phases assembled from achiral molecules: twist-bend nematic and helical filamentary B-4 phases formed by mesogenic dimers. J Molec Liq. 2022;346:118180.
  • Vaganova TA, Panteleeva EV, Shteingarts VD. Reductive activation of arenecarbonitriles for the reactions with some carbon-centered electrophiles: the reaction mechanisms and synthetic applications. Russian Chem Bull. 2008;57:768–779.
  • Panteleeva EV, Bagryanskay IY, Sal’-Nikov GE, et al. The formation of dicyanoterphenyls by the interaction of terephthalonitrile dianion with biphenylcarbonitriles in liquid ammonia. Arkivoc. 2011;8:123–133.
  • Panteleeva EV, Shchegoleva LN, Vysotsky VP, et al. Reductive activation of arenes, XVIII. Cyanophenylation of aromatic nitrites by terephthalonitrile dianion: is the charge-transfer complex a key intermediate? Eur J Org Chem. 2005;2005:2558–2565.
  • Peshkov RY, Panteleeva EV, Wang CY, et al. One-Pot synthesis of 4 ’-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling. Beilstein J Org Chem. 2016;12:1577–1584.
  • Birch AJ. Reduction by dissolving metals .3. J Chem Soc. 1946;593–597.
  • Birch AJ. Reduction by dissolving metals .4. J Chem Soc. 1947;102–105.
  • Birch AJ. Reduction by dissolving metals. Part I. J Chem Soc. 1944;430–436.
  • Hogan JL, Imrie CT, Luckhurst GR. Asymmetric dimeric liquid-crystals - the preparation and properties of the α-(4-cyanobiphenyl-4’-oxy)-ω-(4-n-alkylanilinebenzylidene-4 ’-oxy)hexanes. Liq Cryst. 1988;3:645–650.
  • Attard GS, Date RW, Imrie CT, et al. Nonsymmetrical dimeric liquid-crystals - the preparation and properties of the ?-(4-cyanobiphenyl-4’-yloxy)-ω-(4-n-alkylanilinebenzylidene-4’-o xy)alka. Liq Cryst. 1994;16:529–581.
  • Imrie CT. Non-Symmetric liquid crystal dimers: how to make molecules intercalate. Liq Cryst. 2006;33:1449–1454.
  • Imrie CT, Luckhurst GR. Liquid crystal trimers. The synthesis and characterisation of the 4,4 ‘-bis omega-(4-cyanobiphenyl-4’-yloxy)alkoxy biphenyls. J Mater Chem. 1998;8:1339–1343.
  • Imrie CT, Lu ZB, Picken SJ, et al. Oligomeric rod-disc nematic liquid crystals. Chem Commun. 2007;1245–1247.
  • Imrie CT, Stewart D, Remy C, et al. Liquid crystal tetramers. J Mater Chem. 1999;9:2321–2325.
  • Tuchband MR, Paterson DA, Salamonczykc M, et al. Distinct differences in the nanoscale behaviors of the twist-bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc Natl Acad Sci, USA. 2019;116:10698–10704.
  • Craig AA, Imrie CT. Effect of spacer length on the thermal-properties of side-chain liquid-crystal polymethacrylates .2. Synthesis and characterization of the poly omega-(4’-cyanobiphenyl-4-yloxy)alkyl methacrylates. Macromolecules. 1995;28:3617–3624.
  • Imrie CT, Schleeh T, Karasz FE, et al. Dependence of the transitional properties of polystyrene-based side-chain liquid-crystalline polymers on the chemical nature of the mesogenic group. Macromolecules. 1993;26:539–544.
  • Imrie CT, Karasz FE, Attard GS. Effect of backbone flexibility on the transitional properties of side-chain liquid-crystalline polymers. Macromolecules. 1993;26:3803–3810.
  • Davis EJ, Mandle RJ, Russell BK, et al. Liquid-Crystalline structure-property relationships in halogen-terminated derivatives of cyanobiphenyl. Liq Cryst. 2014;41:1635–1646.
  • Rupar I, Mulligan KM, Roberts JC, et al. Elucidating the smectic A-promoting effect of halogen end-groups in calamitic liquid crystals. J Mater Chem C. 2013;1:3729–3735.
  • Mandle RJ, Goodby JW. An interplay between molecular pairing, smectic layer spacing, dielectric anisotropy and re-entrant phenomena in -alkenyloxy cyanobiphenyls. Liq Cryst. 2017;44:656–665.
  • Wang KL, Rai P, Fernando A, et al. Synthesis and properties of fluorine tail-terminated cyanobiphenyls and terphenyls for chemoresponsive liquid crystals. Liq Cryst. 2020;47:3–16.
  • Wang KL, Szilvasi T, Gold J, et al. New room temperature nematogens by cyano tail termination of alkoxy and alkylcyanobiphenyls and their anchoring behavior on metal salt-decorated surface. Liq Cryst. 2020;47:540–556.
  • Crivello JV, Deptolla M, Ringsdorf H. The synthesis and characterization of side-chain liquid-crystal polymers based on polystyrene and poly-alpha-methystyrene. Liq Cryst. 1988;3:235–247.
  • Frisch MJ, et al. Gaussian 09 (Revision B.01). Wallingford CT: Gaussian Inc.; 2010.
  • Dennington R, Keith TA, Millam JMG. GaussView 5. 2009.
  • Macrae CF, Sovago I, Cottrell SJ, et al. Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystal. 2020;53:226–235.
  • Henderson PA, Cook AG, Imrie CT. Oligomeric liquid crystals: from monomers to trimers. Liq Cryst. 2004;31:1427–1434.
  • Walker R, Pociecha D, Storey JMD, et al. Remarkable smectic phase behaviour in odd-membered liquid crystal dimers: the CT6O.M series. J Mater Chem C. 2021;9:5167–5173.
  • Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964;68:441–451.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Wang KL, Jirka M, Rai P, et al. Synthesis and properties of hydroxy tail-terminated cyanobiphenyl liquid crystals. Liq Cryst. 2019;46:397–407.
  • Mandle RJ, Davis EJ, Voll CCA, et al. Self-Organisation through size-exclusion in soft materials. J Mater Chem C. 2015;3:2380–2388.
  • Stewart D, Imrie CT. Supramolecular side-chain liquid-crystal polymers .1. Thermal-behavior of blends of a low molar-mass mesogenic acid and amorphous polymers. J Mater Chem. 1995;5:223–228.