436
Views
8
CrossRef citations to date
0
Altmetric
Articles

Perspective on structure-property relationship of room temperature single-component liquid crystals

ORCID Icon, &
Pages 1545-1603 | Received 29 Jun 2021, Accepted 13 Jul 2022, Published online: 03 Aug 2022

References

  • Reinitzer F. Contributions to the knowledge of cholesterol. Montasch Chem. 1888;9:421–441.
  • Goodby JW, Collings PJ, Kato T, et al. Handbook of liquid crystals. Weinheim: Wiley-VCH; 2014.
  • Collings PJ, Hird M. Introduction to liquid crystals chemistry and physics. London: Taylor and Francis Ltd; 1997.
  • Chandrasekhar S. Liquid crystals. 2nd ed. Cambridge: Cambridge University Press; 1992.
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Oxford Science Publication; 1993.
  • Lehn JM. Supramolecular chemistry: concepts and perspectives. New York: Wiley-VCH; 1995.
  • Castellano JA. The story of liquid crystal displays and the creation of an industry. Singapore: World Scientific; 2005.
  • Bremer M, Kirsch P, Klasen-Memmer M, et al. The TV in your pocket: development of liquid-crystal materials for the new millennium. Angew Chem Int Ed. 2013;52:8880–8896.
  • Bahadur B. Liquid crystals: application and uses. Vols. 1-3. Singapore: World Scientific; 1990.
  • Shanker G, Paul B, Ganjiwale A. Amino acid and peptide-based liquid crystals: an overview. Curr Organic Synth. 2021;18:333–351.
  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279:2077–2080.
  • Xu H, Hartono D, Yang KL. Detecting and differentiating Escherichia coli strain TOP10 using optical textures of liquid crystals. Liq Cryst. 2010;37:1269–1274.
  • Yelamaggad CV, Shanker G, Hiremath US, et al. Cholesterol-Based nonsymmetric liquid crystal dimers. J Mater Chem. 2008;18:2927–2949.
  • Yelamaggad CV, Shanker G. Synthesis and characterization of non-symmetric chiral dimers. Liq Cryst. 2007;34:1045–1057.
  • Yelamaggad CV, Shanker G. Mesomorphic chiral non‐symmetrical dimers: synthesis and characterization. Liq Cryst. 2007;34:799–899.
  • Gray GW. Molecular structure and properties of liquid crystals. London and New York: Academic press, Inc; 1962.
  • Pugh C, Kiste AL Handbook of liquid crystals. Vol. 3, Demus D, Goodby JM, Gray GW, Spiess HW, Vill V editors. Weinheim (Germany): Wiley-VCH; 1998. Part 2. p. 121.
  • Lehmann O. Über fliessende Krystalle. Z Phys Chem. 1889;4:462–472.
  • Glenn H, Brown, and Crooker PP. A colorful state of matter. Chem Eng News. 1983;61:24–37.
  • Lydon J. Chromonic liquid crystal phases. Curr Opin Colloid Interface Sci. 1998;3:458–466.
  • Shanker G. Self assembly of homomeric dipeptides, bisamides and dimers. Saarbrucken (Germany): Lambert Academic Publishing; 2015 .
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self organized soft materials. Angew Chem Int Ed. 2006;45:38–68.
  • Kato T, Uchida J, Ichikawa T, et al. Functional liquid crystals towards the next generation of materials. Angew Chem Int Educ. 2018;57:4355–4371.
  • Tschierske C. Development of structural complexity by liquid crystal self assembly, Angew. Chem Int Ed. 2013;52:8828–8878.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Educ. 2007;46:4832–4887.
  • Wohrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36:2096–2124.
  • Imrie CT, Henderson PA, Yeap GY. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36:755–777.
  • Collings PJ, and Patel JS. Handbook of liquid crystals research. Oxford: Oxford University Press; 1993.
  • Bisoyi HK, Li Q. Liquid crystals. Kirk-Othmer Encyclopedia of Chemical Technology. 2014;3:1–52.
  • Achalkumar AS, Li Q. editors. Photoactive functional soft materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019. pp. 227–283.
  • Smith GW. Mixing and phase separation in liquid crystal/matrix systems: determination of the excess specific heat of mixing. Phys Rev Lett. 1993;70:198–201.
  • Klein S. Electrophoretic liquid crystal displays: how far are we? Liq Cryst Rev. 2013;1:52–64.
  • Tschierske C. Liquid crystals materials design and self –assembly. 2012. Ed. Berlin Heidelberg: Springer-Verlag.
  • Balachandran R, Panov VP, Vij JK, et al. Dielectric and electro-optic studies of a bimesogenic liquid crystal composed of bent-core and calamitic units. Phys Rev E. 2014;90:032506.
  • O’-Brien MN, Jones MR, Lee B, et al. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat Mater. 2015;14:833–839.
  • Zannoni C. Molecular design and computer simulations of novel mesophases. J Mater Chem. 2001;11:2637–2646.
  • Yoneya M. Toward rational design of complex nanostructured liquid crystals. Chem Rec. 2011;11:66–76.
  • Ungar G, Liu F, and Zeng X. Handbook of liquid crystals. Goodby J, et al. editor Vol. 5, Weinheim: Wiley-VCH; 2014. Ch. 7.
  • Gray GW. Handbook of liquid crystals, Vol 2B: low molecular weight liquid crystals II. Mol Cryst. 1969;7:127–151.
  • Markau K, Maier W. About some new non-aromatic crystalline liquid substances. Vol. 95. Weinheim: Wiley-VCH; 1962. p. 889.
  • Gray GW, Harrison KJ, Nash JA, et al. Liquid crystals and ordered fluids. Vol. 2. New York: Plenum Press; 1974. pp. 617–643.
  • Gibb CJ, Storey JMD, Imrie CT. A convenient one-pot synthesis, and characterisation of the ω-bromo-1-(4-cyanobiphenyl-4’-yl) alkanes (CBnBr). Liq Cryst. 2022;1–11. DOI:10.1080/02678292.2022.2084568
  • Dunmura DA. The magic of cyanobiphenyls: celebrity molecules. Liq Cryst. 2015;42:678–687.
  • Bailey AL, Bates GS. Synthesis of Isocyano and (Haloalkyny1)biphenyls: new thermotropic liquid crystals. Mol Cryst Liq Cryst. 1991;198:417–428.
  • Jones D, Creagh L, Lu S. Dynamic scattering in a room temperature nematic liquid crystal. Appl Phys Lett. 1970;16:61–62.
  • Mallon JJ, Kantor SW. Thermotropic hydrocarbon liquid crystalline monomers and model compounds. Mol Cryst Liq Cryst. 1988;157:25–41.
  • Manabe A, Bremer M, Kraska M. Ferroelectric nematic phase at and below room temperature. Liq Cryst. 2021;48:1079–1086.
  • Goud BVS, Potukuchi DM, Pisipati VG. Low frequency dielectric and optical characterization of room temperature ferroelectric liquid crystal 2cl.BAAP.120-BBP. Ferroelectrics. 2002;265:279–295.
  • Champa RA. A low temperature liquid crystal exhibiting smectic morphology. Mol Cryst Liq Cryst. 1972;16:175–177.
  • Aldred MP, Eastwood AJ, Kelly SM, et al. Light-Emitting fluorene photoreactive liquid crystals for organic electroluminescence. Chem Mater. 2004;16:4928–4936. DOI:10.1021/cm0351893
  • Campbell NL, Duffy WL, Thomas GI, et al. Nematic 2,5-disubstituted thiophenes. J Mater Chem. 2002;12:2706–2721.
  • Nuita M, Sakuda J, Hirai Y, et al. Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem Lett. 2011;40:412–413.
  • Funahashi M, Ishii T, Sonoda A. Temperature-Independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction. Chemphyschem. 2013;14:2750–2758.
  • Shanker G, Bindushree A, Chaithra K, et al. Room temperature helical fluids in single-component systems. J Mol Liq. 2019;275:849–858.
  • Bock H, Rajaoarivelo M, Clavaguera S, et al. An efficient route to stable room-temperature liquid-crystalline triphenylenes. Eur J Org Chem. 2006;2006:2889–2893. DOI:10.1002/ejoc.200600116
  • Saidi-Besbes S, Grelet E, Bock H. Soluble and liquid-crystalline ovalenes. Angew Chem Int Educ. 2006;45:1783–1786.
  • Kumar S, Manickam M, Balagurusamy VSK. Electrophilic aromatic substitution in triphenylene discotics: synthesis of alkoxynitrotriphenylenes. Liq Cryst. 1999;26:1455–1466.
  • Kohmoto S, Mori E, Kishikawa K. Room-Temperature discotic nematic liquid crystals over a wide temperature range: alkali-metal-ion-induced phase transition from discotic nematic to columnar phases. J Am Chem Soc. 2007;129:13364–13365.
  • Murschell AE, Sutherland TC. Anthraquinone-Based discotic liquid crystals. Langmuir. 2010;26(15):12859–12866.
  • Bisoyi HK, Kumar S. Microwave-Assisted synthesis of rufigallol and its novel room-temperature liquid crystalline derivatives. Tetrahedron Lett. 2007;48:4399–4402.
  • Bisoyi HK, Kumar S. Room-Temperature electron-deficient discotic liquid crystals: facile synthesis and mesophase characterization. New J Chem. 2008;32:1974–1980.
  • Nuckolls C, Katz TJ. Synthesis, structure, and properties of a helical columnar liquid crystal. J Am Chem Soc. 1998;120:9541–9544.
  • Bijak K, Janeczek H, Grucela-Zajac M, et al. New room-temperature thermotropic perylene-based bisimides: synthesis, liquid crystalline, light-emitting and electrochemical properties. Opt Mater. 2013;35:1042–1050.
  • Bhavsar GA, Asha SK. Pentadecyl Phenol- and Cardanol-functionalized fluorescent, room temperature liquid-crystalline perylene bisimides: effect of pendant chain unsaturation on self-assembly. Chem: Eur J. 2011;17:12646–12658.
  • Wicklein A, Muth M, Thelakkat M. Room temperature liquid crystalline perylene diester benzimidazoles with extended absorption. J Mater Chem. 2010;20:8646–8652.
  • Meng L, Wu Q, Yang F, et al. Novel room-temperature thermotropic liquid crystals: synthesis and mesomorphism of gallic–perylene–gallic trimers. New J Chem. 2015;39:72–76.
  • Cormier RA, Gregg BA. Synthesis and characterization of liquid crystalline perylene diimides. Chem Mater. 1998;10:1309–1319.
  • An Z, Yu J, Jones SC, et al. High electron mobility in room temperature discotic liquid crystalline perylene diimides. Adv Mater. 2005;17:2580–2583.
  • Yelamaggad CV, Achalkumar AS. Tris(n-Salicylideneanilines) [TSANs] exhibiting a room temperature columnar mesophase: synthesis and characterization. Tetrahedron Lett. 2006;47:7071–7075.
  • Kelber J, Achard M, Durola F, et al. Distorted arene core allows room-temperature columnar liquid crystal glass with minimal side chains. Angew Chem Int Educ. 2012;51:1–5.
  • Kelber J, Achard M, Bonneval BG, et al. Columnar enzoperylene‐hexa‐and tetracarboxylic Imides and esters: synthesis, mesophase stabilisation and observation of charge‐transfer interactions. Chem: Eur J. 2011;17:8145–8155.
  • Osman MA. Molecular structure and mesomorphic properties of thermotropic liquid crystals-I. Z Naturforsch. 1983;38:693–697.
  • Osman MA. Substituted terminal alkyl groups and their prospects in liquid crystal chemistry. Mol Cryst Liq Cryst. 1985;131:353–360.
  • PetrZilka M. Apolar acetylenic liquid crystals. Mol Cryst Liq Cryst. 1984;111:347–358.
  • Dabrowski R, Zytynski E. Mesomorphic properties of 4-n-Pentylbiphenyl derivatives. Mol Cryst Liq Cryst. 1982;87:109–135.
  • Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem a Eur J. 2017;23:14554–14562.
  • Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid-crystal material with highly polar order. Adv Mater. 2017;29:1702354.
  • Chen X, Korblova E, Dong DP, et al. First -principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc Natl Acad Sci USA. 2020;117:14021–14031.
  • Pociecha D, Walker R, Cruickshank E, et al. Intrinsically chiral ferronematic liquid crystals: an inversion of the helical twist sense at the chiral nematic chiral ferronematic phase transition. J Mol Liq. 2022;361:119532.
  • Boden N, Bushby RJ, Cammidge AN. Functionalisation of triphenylene based discotic liquid crystals. Mol Cryst Liq Cryst. 1995;260:307–313.
  • Boden N, Bushby RJ, Cammidge AN. Preliminary communications functionalization of discotic liquid crystals by direct substitution into the discogen ring a-nitration of triphenylene-based discogens. Liq Cryst. 1995;18:673–676.
  • Boden N, Bushby RJ, Cammidge AN, et al. Novel discotic liquid crystals created by electrophilic aromatic substitution. J. 1995;5:2275–2281.
  • Lai CK, Ke YC, Su JC, et al. Heterocyclic 1,3,4-oxadiazole as columnar core. Liq Cryst. 2002;29:915–920.
  • Shanker G, Prehm M, Yelamaggad CV, et al. Benzylidene hydrazine based room temperature columnar liquid crystals. J Mater Chem. 2011;21:5307–5311.
  • Shanker G, Shankar Rao DS, Prasad SK, et al. Synthesis and characterization of supramolecular optically active bisamides derived from amino acids. Tetrahedron. 2012;68:6528–6534.
  • Yoon S, Kim JH, Kim KS, et al. Mesomorphic organization and thermochromic luminescence of dicyanodistyrylbenzene‐based phasmidic molecular disks: uniaxially aligned hexagonal columnar liquid crystals at room temperature with enhanced fluorescence emission and semiconductivity. Adv Funct Mater. 2012;22:61–69.
  • Barberá J, Godoy MA, Hidalgo PI, et al. Columnar liquid crystalline benzenetrisamides with pendant 1,3,4-oxadiazole groups. Liq Cryst. 2011;38:679–688.
  • Ryu M, Choi J, Cho B. Design, synthesis, and self-assembly behavior of C3-symmetry discotic molecules via click chemistry. J Mater Chem. 2010;20:1806–1810.
  • Beltrán E, Serrano JL, Sierra T, et al. Tris(triazolyl)triazine via click-chemistry: a C3 electron-deficient core with liquid crystalline and luminescent properties. Org Lett. 2010;12:1404–1407.
  • Dambal HK, Yelamaggad CV. Technologically promising, room temperature luminescent columnar liquid crystals derived from s-triazine core: molecular design, synthesis and characterization. Tetrahedron Lett. 2012;53:186–190.
  • Varshney SK, Prasad V, Takezoe H. Room-Temperature discotic cholesteric and nematic phases: influence of 3,7-dimethyloctane peripheral chain on the molecular self-assembly of radial polyalkynylbenzene. Liq Cryst. 2011;38:53–60.
  • Chen HH, Lin HA, Chien SA, et al. Single –component room-temperature discotic nematic liquid crystals formed by introducing an attraction-enhancing in-plane protusion on to the Hexa(phenylethynyl)Benzene core. J Mater Chem. 2012;22:12718–12722.
  • Prabhu DD, Kumar NSS, Sivadas AP, et al. Trigonal 1,3,4-oxadiazole-based blue emitting liquid crystals and gels. J Phys Chem. 2012;116:13071–13080.
  • Bala I, De J, Gupta SP, et al. High hole mobility in room temperature discotic liquid crystalline tetrathienoanthracenes. Chem Commun. 2020;56:5629–5632.
  • Gupta M, Pal SK. The first examples of room temperature liquid crystal dimers based on cholesterol and pentaalkynylbenzene. Liq Cryst. 2015;42:1250–1256.
  • Van De Craats AM, Warman JM, Fechtenkötter A, et al. Record charge carrier mobility in a room‐temperature discotic liquid‐crystalline derivative of hexabenzocoronene. Adv Mater. 1999;11:1469–1472.
  • De J, Bala I, Gupta SP, et al. High hole mobility and efficient ambipolar charge transport in heterocoronene-based ordered columnar discotics. J Am Chem Soc. 2019;141:18799–18805.
  • Srinatha MK, Poppe S, Shanker G, et al. 2,3,4-Trihydroxy benzonitrile-based liquid crystals: fiber forming room temperature nematic phases. J Mol Liq. 2020;317:114244 (1–6.
  • An Z, Yu J, Domercq B, et al. Room-Temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air.J. Mater Chem. 2009;19:6688–6698.
  • Bai YF, Bao L, Hu P, et al. Copper-Free click chemistry between azides and internal alkynes for triphenylene discotic liquid crystal trimer formation. Liq Cryst. 2013;40:97–105.
  • Wang L, Park SY, Kim SM, et al. Bulk heterojunction photovoltaic cells based on room temperature liquid crystalline tetrathiafulvalene derivatives. Liq Cryst. 2012;39:795–801.
  • Cavero E, Uriel S, Romero P, et al. Tetrahedral zinc complexes with liquid crystalline and luminescent properties: interplay between nonconventional molecular shapes and supramolecular mesomorphic order. J Am Chem Soc. 2007;129:11608–11618.
  • Escande A, Guénée L, Nozary H, et al. Rational tuning of melting entropies for designing luminescent lanthanide-containing thermotropic liquid crystals at room temperature. Chem: Eur J. 2007;13:8696–8713.
  • Pramanik HAR, Das G, Bhattacharjee CR, et al. Tunable emissive lanthanidomesogen derived from a room‐temperature liquid‐crystalline Schiff‐Base ligand. Chem: Eur J. 2013;19:13151–13159.
  • Romero-Nieto C, Marcos M, Merino S, et al. Room temperature multifunctional organophosphorus gels and liquid crystals. Adv Func Mater. 2011;21:4088–4099.
  • Trzaska ST, Zheng H, Swager TM, et al. Metallomesogens: Zirconium Tetrakis-â-diketonate. Liq Cryst Chem Mater. 1999;11:130–134.
  • Omenat A, and Ghedini M. Room-Temperature organometallic chiral liquid crystals: azoxymercury complexes. J Chem Soc. 1994:1309–1310.
  • Godbert N, Dattilo D, Termine R, et al. UV/Vis to NIR photoconduction in cyclopalladated complexes. Chem Asian J. 2009;4:1141–1146.
  • Giménez R, Crespo O, Diosdado B, et al. Liquid crystalline copper(i) complexes with bright room temperature phosphorescence. J Mater Chem. 2020;8:6552–6557.
  • de la Fuente MR, Palacios B, Pe´-Rez-Jubindo MA, et al. Synthesis, structure, and properties of a helical columnar liquid crystal. J Am Chem Soc. 1998;120:9541–9544.
  • Jung BM, Huang YD, Chang JY. Twin effects of induction and stabilization of SmA* phase by Cu(II) upon 4,4’-disubstituted salicylideneimine containing [1,2,3]-triazole and cholesterol arms. Liq Cryst. 2010;37:85–92.
  • Patel BR, Suslick KS. Discotic liquid crystals from a bis-pocketed porphyrin. J Am Chem Soc. 1998;120:11802–11803.
  • Wilson CJ, Wilson DA, Boyle RW, et al. The design and investigation of porphyrins with liquid crystal properties at room temperature. J Mater Chem. 2013;1:144–150.
  • Atilla A, Aslibay G, Gürek AG, et al. Synthesis and characterization of liquid crystalline tetra- and octa-substituted novel phthalocyanines. Polyhedron. 2007;26:1061–1069.
  • Sato K, Itoh Y, Aida T. Columnarly assembled liquid-crystalline peptidic macrocycles unidirectionally orientable over a large area by an electric field. J Am Chem Soc. 2011;133:13767–13769.
  • Dominguez C, Heinrich B, Donnio B, et al. Room-Temperature columnar mesophases in Triazine–Gold thiolate metal–organic supramolecular aggregates. Chem Eur J. 2013;19:5988–5995.
  • Ebert M, Jungbauer DA, Kleppinger R, et al. Structural and dynamic properties of a new type of discotic nematic compounds. Liq Cryst. 1989;4:53–67.
  • Chien S-C, Chen HH, Chen HC, et al. Low‐temperature discotic nematic superstructures by incorporating a laterally substituted sidearm in Hexakis(phenylethynyl)benzene discogens. Adv Funct Mater. 2007;17:1896–1902.
  • Praefcke K, Kohne B, Singer D. Hexaalkynyltriphenylene: a new type of nematic‐discotic hydrocarbon. Angew Chem. 1990;29:177–179.
  • Xiao Q, Sakurai T, Fukino T, et al. Propeller-Shaped fused oligothiophenes: a remarkable effect of the topology of sulfur atoms on columnar stacking. J Am Chem Soc. 2013;135:18268–18271.
  • Yasuda T, Shimizu T, Liu F, et al. Electro-Functional octupolar π-conjugated columnar liquid crystals. J Am Chem Soc. 2011;133:13437–13444.
  • Liu CX, Wang H, Du JQ, et al. Molecular design of benzothienobenzothiophene-cored columnar mesogens: facile synthesis, mesomorphism, and charge carrier mobility. J Mater Chem. 2018;6:4471–4478.
  • Zhao KC, Du JQ, Wang HF, et al. Board‐like fused‐thiophene liquid crystals and their benzene analogs: facile synthesis, self‐assembly, p‐type semiconductivity, and photoluminescence. Chem Asian J. 2019;14:462–470.
  • Isoda K, Yasuda T, Kato T. Truxene‐based columnar liquid crystals: self‐assembled structures and electro‐active properties. Chem Asian J. 2009;4:1619–1625.
  • Ma T, Wang H-F, Zhao K-Q, et al. Nonlinear nonacenes with a dithienothiophene substructure: multifunctional compounds that act as columnar mesogens, Luminophores, π Gelators, and p‐type semiconductors. ChemPluschem. 2019;84:1439–1448.
  • Cruickshank E, Strachan GJ, and Storey JM, et al. Chalcogen bonding and liquid crystallinity: understanding the anomalous behaviour of the 4′-(alkylthio)[1,1′-biphenyl]-4-carbonitriles (nSCB). J Mol Liq. 2022;346(346):117094. DOI:10.1016/j.molliq.2021.117094
  • De J, Gupta SP, Bala I, et al. Phase behavior of a new class of anthraquinone-based discotic liquid crystals. Langmuir. 2017;33(48):13849. DOI:10.1021/acs.langmuir.7b03031
  • Wang L, Jeong KU, Lee MH. Room-Temperature columnar liquid crystal based on tetrathiafulvalene. J Mater Chem. 2008;18:2657–2659.
  • Shanker G, Yelamaggad CV. A new class of low molar mass chiral metallomesogens: synthesis and characterization. J Mater Chem. 2011;21:15279–15287.
  • Imrie CT, and Luckhurst GR. Handbook of liquid crystals. Demus D, Goodby J, Gray G, Spiess H, Vill V, editors. Weinheim: Wiley-VCH; 1998. Vol. 2B, p. 801.
  • Hudson SA, Maitils PM. Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes.Chem. Rev. 1993;93:861–885.
  • Marco M, Omenat A, Barbera J, et al. Structural study of metallomesogens derived from tris-[2-(salicylideneamino)ethyl]amine. A molecular meccano. J Mater Chem. 2004;14:3321–3327.
  • Seranno JL. Metallomesogens: synthesis, properties and applications. Weinheim: Wiley-VCH; 1996.
  • Yahg Q, Liu J, Zhang L, et al. Functionalized periodic mesoporous organosilicas for catalysis. J Mater Chem. 2009;19:1945–1955.
  • Gao J, Li J, Bai S, et al. The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. J Mater Chem. 2009;19:8580–8588.
  • Liu J, Qiao SZ, Hu QH, et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7:425–443.
  • Shanker G, Prehm M, Nagaraj M, et al. 1,2,4-Oxadiazole-Based bent-core liquid crystals with cybotactic nematic phases. Chemphyschem. 2014;15:1323–1335.
  • Barbera´ J, Iglesias R, Serrano JL, et al. Switchable columnar metallomesogens new helical self-assembling systems. J Am Chem Soc. 1998;120:2908–2918.
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45:2221–2252.
  • Merkel K, Kocot A, Vij JK, et al. Distortions in structures of the twist-bend nematic phase of a bent-core liquid crystal by the electric field. Phys Rev E. 2018;98(1–8):022704.
  • Trbojevic N, Read DJ, Nagaraj M. Metastable room-temperature twist-bend nematic phases via photopolymerization. Phys Rev E. 2019;99(1–5):062704.
  • Mertelj A, Cmok L, Sebastián N, et al. Splay nematic phase. Phys Rev X. 2018;8(1–12):041025.
  • Xiang J, Li YN, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27:3014–3018.
  • Xiang J, Shiyanovskii SV, Imrie CT, et al. Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director. Phys Rev Lett. 2014;112:217801.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natil Acad Sci USA. 2016;113:12925–12928
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1 ‘‘, 7 ‘‘-bis(4-cyanobiphenyl-4 ‘- yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704.
  • Paterson DA, Abberley JP, Harrison WT, et al. Cyanobiphenyl-Based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44:127–146.
  • Mandle RJ. Designing liquid-crystalline oligomers to exhibit twist-bend modulated nematic phases. Chemical Record. 2018;18:1341–1349.
  • Cruickshank E, Salamonczyk M, Pociecha D, et al. Sulfur-Linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46:1595–1609.
  • Walker R, Pociecha D, Storey JMD, et al. The chiral twist-bend nematic phase (N*(TB)). Chem a Eur J. 2019;25:13329–13335.
  • Yu J, Saupe A. Observation of a biaxial nematic phase in Potassium Laurate-1-Decanol-Water mixtures L. Phys Rev Lett. 1980;45:1000.
  • Cross CW, Fung BM. Tricritical points of smectic a to nematic phase transitions for binary liquid crystal mixtures containing cyanobiphenyls. Liq Cryst. 1995;19:863.
  • Chidichimo GN, Vaz AP, Yaniv Z, et al. Investigation of the ribbon structure of a lyotropic liquid crystals by deuterium nuclear magnetic resonance. Phys Rev Lett. 1982;49:1950.
  • Quist P–. First order transitions to a lyotropic biaxial nematic. Liq Cryst. 1995;18:623.
  • Fan SM, Fletcher ID, Gundogan B, et al. The symmetry of the nematic phase of a thermotropic liquid crystal. Biaxial or Uniaxial? Chem Phys Lett. 1993;204:517.
  • Biscarini F, Chiccoli C, Pasini P, et al. Phase diagram and orientational order in a biaxial lattice model: a Monte Carlo study. Phys Rev Lett. 1995;75:1803.
  • Sunil BN, Srinatha MK, Shanker G, et al. Effective tuning of optical storage devices using photosensitive bent-core liquid crystals. J Mol Liq. 2020;304:112719.
  • Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science. 2002;295:2407–2409.
  • Meyer WH. Polymer electrolytes for Lithium‐Ion batteries. Adv Mater. 1998;10:439–448.
  • Wright PV. Developments in polymer electrolytes for Lithium batteries. MRS Bull. 2002;27:597–602.
  • Ungar G, Batty SV, Percec V, et al. Structure and conductivity of liquid crystal channel‐like linic complexes of taper‐shaped compounds. Adv Mater Opt Electron. 1994;4:303–313.
  • Lauter U, Meyer WH, Wegner G. Molecular composites from rigid-rod poly(p-phenylene)s with Oligo(oxyethylene) side chains as novel polymer electrolytes. Macromolecules. 1997;30:2092–2101.
  • Gin DL, Noble RD. Designing the next generation of chemical separation membranes. Science. 2011;332:674–676.
  • Wang L, Boutilier MSH, Kidambi PR, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat Nanotechnol. 2017;12:509–522.
  • Park HB, Kamcev J, Robeson LM, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science. 2017;3561137(1–12). DOI:10.1126/science.aab0530.
  • Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater. 2016;1(1–15):16018.
  • Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1:187–1922.
  • Toenjes ST, Gustafson JL. Atropisomerism in medicinal chemistry: challenges and opportunities. Future Med Chem. 2018;10:409–422.
  • Balaram P, Nirmalangshu C, Ravindra KG, et al. Nonsymmetrical cholesterol dimers constituting regioisomeric oxadiazole and thiadiazole cores: an investigation of the structure–property correlation. New J Chem. 2017;41:879–888.
  • Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev. 1996;96:3147–3176.
  • Kumari S, Carmona AV, Tiwari AK, et al. Amide bond bioisosteres: strategies, synthesis, and successes. J Med Chem. 2020;63:12290–12358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.