185
Views
2
CrossRef citations to date
0
Altmetric
Articles

Thermo-acoustical studies of zinc oxide nano particles dispersed nematic liquid crystals mixtures in the temperatures range 283.15 K318.15K

, , , , &
Pages 1604-1611 | Received 10 Feb 2022, Accepted 13 Jul 2022, Published online: 01 Aug 2022

References

  • Collings PJ, and Goodby JW. Introduction to liquid crystals: chemistry and physics. Boca Raton: CRC Press; 2019.
  • Chandrasekhar S, Krishna Prasad S. Recent developments in discotic liquid crystals. Contemp Phys. 1999;40(4):237–245.
  • Singh S, and Dunmur DA. Liquid crystals: fundamentals. Singapore: World Scientific; 2002.
  • Shen Y, Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Appl Sci. 2019 Jan;9(12):2512.
  • Sharma V, Kumar P, Malik P, et al. Preparation and electrooptic study of reverse mode polymer dispersed liquid crystal: performance augmentation with the doping of nanoparticles and dichroic dye. J Appl Polym Sci. 2020 Jun 10;137(22):48745. doi:10.1002/app.48745.
  • Kumar P, Oh SY, Baliyan VK, et al. Topographically induced homeotropic alignment of liquid crystals on self-assembled opal crystals. Opt Express. 2018 Apr 2;26(7):8385–8396. doi:10.1364/OE.26.008385.
  • Kumar P, Sharma V, Malik P, et al. Nano particles induced vertical alignment of liquid crystal for display devices with augmented morphological and electro-optical characteristics. J Mol Struct. 2019 Nov 15;1196:866–873. doi:10.1016/j.molstruc.2019.06.045.
  • Sehgal CM. Non-Linear ultrasonics to determine molecular properties of pure liquids. Ultrasonics. 1995;33:155–161.
  • Hartmann B. Ultrasonic properties of phenolic and poly (phenylquinoxaline) polymers. J Appl Polym Sci. 1975;19:3241–3255.
  • Sharma BK. Isothermal volume dependence thermodynamic gruneisen-parameter and its relationship with thermo-acoustic and nonlinear parameters of quasi-spherical molecular liquids and fluorocarbon fluids. Ultrasonics. 1987;25:366.
  • Zhu Q, Burtin C, Binetruy C. Acoustoelastic effect in polyamide 6: linear and nonlinear behaviour. Polymer Testing. 2014;40:178–186.
  • Moelwyn-Hughes EA. The determination of intermolecular energy constants from common physicochemical properties of liquids. J Phys Chem. 1951;55:1246–1254.
  • Dey R, Singh AK, Soni NK, et al. Isotopic effects on non-linearity, molecular radius and intermolecular free length. Pramana. 2006;67:389–394.
  • Latha D, Madhavi VG, Pisipati KM, et al. Thermodynamic parameters of N-(pn-alkoxybenzylidene)-pn-(butyloxyanilines),(no. O4) liquid crystal compounds- a dilatometric study. J Mol Liq. 2011;163:14–19.
  • Ayachit NH, Vasan ST, Sannaningannavar FM, et al. Thermodynamic and acoustical parameters of some nematic liquid crystals. J Mol Liq. 2007;133:134–138.
  • Latha DM, Pisipati VGKM, Prasad PD. Estimation of effective Debye temperature from sound velocity of N-(pn-alkoxybenzylidene)-pn-alkylanilines, (nO. m) liquid crystalline compounds. J Mol Liq. 2011;161:91–94.
  • Reddy RR, Venkatesulu A, Rama Gopal K, et al. Thermo acoustic parameters in the nematic and isotropic phases of 5CB and tetraethyl methane in 5CB. J Mol Liq. 2007;130:112–118.
  • Pandey JD, Dey R, Chhabra J. Thermoacoustical approach to the intermolecular free-length of liquid mixtures. Phys Chem Comm. 2003;6:55–58.
  • Devi A, Malik P, Kumar H. Thermodynamic and acoustical study of zinc oxide-nematic liquid crystals mixtures. J Mol Liq. 2016;214:145–148.
  • Pandey JD, Dey R, Upadhyaya M. Non-Linearity parameter B/A of binary and multi-component liquid mixtures. Acoust Lett. 1997;21:120–125.
  • Sharma BK. Relation between lattice gruneisen constant and raos constant for polymers. Acustica. 1981;48:118–120.
  • Warfield RW, Hartmann B. Melting and freezing behavior of polyethylene oxide. J Appl Phys. 1973;44:708–714.
  • Rao RVG, Rao BSM. Variation of sound velocity through liquids with pressure. Trans Faraday Soc. 1996;62:2704–2708.
  • Sharma BK. Nonlinearity parameter and its relationship with thermo-acoustic parameters of polymers. J Phys D Appl Phys. 1983;16(10):1959.
  • Sharma B. Evaluation of the temperature coefficient of ultrasonic velocity from internal pressure-temperature data of polymers. Acoust Lett. 1980;4:11.
  • Reddy RR, Kumar RM, Rao TVR, et al. Thermo‐acoustical parameters of some semiconductors. Cryst Res Technol. 1993;28:729–735.
  • Reddy RR, Ahamed NY, Kumar RM, et al. On the behaviour of thermoacoustic parameters in liquid crystals. Cryst Res Technol. 1996;31:391–398.
  • Hartmann B. Ultrasonic absorption and the Gruneisen Parameter. Acta Acust United Acust. 1976;36:24–28.
  • Upmanyu A, Dhiman M, Gupta DP, et al. Frequency dependence studies of acoustical and thermo-dynamical parameters of the binary mixtures of Isopropyl Sulphide and Acetic Acid. Rom J Acoust Vib. 2020;17:128–134.
  • Carnevale EH, Litovitz T. Pressure dependence of sound propagation in the primary alcohols. J Acoust Soc Am. 1955;27:547–550.
  • Rao RM. Velocity of sound in liquids and chemical constitution. J Chem Phys. 1941;9:682–685.
  • Sharma BK. Nonlinearity acoustical parameter and its relation with Rao’s acoustical parameter of liquid state. J Acoust Soc Am. 1983;73:106–109.
  • Sharma BK. The Anderson-Grüneisen parameter of liquid state and its relation with Rao’s acoustical parameter. Acta Acust United Acust. 1983;53:152–158.
  • Anderson LO. Equation for thermal expansivity in planetary interiors. J Geophys Res. 1967;72:3661–3668.
  • Jayoti D, Malik P, and Prasad SK. Effect of ZnO nanoparticles on the morphology, dielectric, electro-optic and photoluminescence properties of a confined ferroelectric liquid crystal material J. Mol. Liq . 2018;250:381–387.
  • Reddy RR, Ahammed Y, Kumar N, et al. Coefficient of volume expansion-thermo acoustical parameters in polystyrene, nylon-6 and teflon in the temperature range 173 degree K to 383 degree K. ASEAN J Sci Technol Dev. 1997;14:1–10.
  • Sharma BK. Relationship of the Sharma‐Parameter S0 with thermo‐acoustic parameters of polymers at the glass temperature using volume expansivity data. physica status solidi. 1992;130:335–342.
  • Sharma BK. 1985. Evaluation of Grueneisen parameter and intermolecular heat capacity of quasi-spherical molecular liquids and fluorocarbon fluids from thermo-acoustic data. Indian J Pure Appl Phys. 23:509–513. New Delhi.
  • Sivaram C, Rao JV, Venkatacharyulu P. Coefficient of volume expansion and thermoacoustic parameters in N‐(P‐hexyloxybenzylidene)‐P‐toluidine. Cryst Res Technol. 1990;25:939–949.
  • Narasimha YM, Murthy VR, Reddy RNVR. Coefficient of volume expansion and thermoacoustic parameters in two natural oils. Cryst Res Technol. 1996;31:921–927.
  • Dhiman M, Singh K, Kaushal J, et al. Ultrasonic study of molecular interactions in polymeric solution of Polypropylene Glycol-400 and Ethanol at 303 K. Acta Acust United Acust. 2019;105:743–752.
  • Upmanyu A, Singh DP. Ultrasonic studies of molecular interactions in polymer solution of the Polyisobutylene (PIB) and Benzene. Acta Acust United Acust. 2014;100:434–439.
  • Sharma BK, Reddy RR. Sharma constant and some thermo-acoustic properties of polycrystalline rare-earth metals, Alkali Metals, Alkali Halides and polyatomic ionic liquids. Indian J Pure Appl Phys. 1985;23:396–402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.