2,305
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Determining dielectric properties of nematic liquid crystals at microwave frequencies using inverted microstrip lines

, ORCID Icon, , &
Pages 2069-2081 | Received 10 May 2022, Accepted 13 Jul 2022, Published online: 27 Jul 2022

References

  • Polat E, Tesmer H, Reese R, et al. Reconfigurable millimeter-wave components based on liquid crystal technology for smart applications. Crystals. 2020;10(5):346. DOI:10.3390/cryst10050346
  • Jakoby R, Gaebler A, Weickhmann C. Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals. 2020;10(6):514.
  • Maune H. Microwave liquid crystal technology. Crystals. 2020;10(8):716.
  • Jiang D, Li X, Fu Z, et al. Millimeter-wave broadband tunable band-pass filter based on liquid crystal materials. IEEE Access. 2020;8:1339–1346.
  • Yazdanpanahi M, Mirshekar-Syahkal D. Millimeter-wave liquid-crystal-based tunable bandpass filter. In: Proceedings of the 2012 IEEE Radio and Wireless Symposium; 2012 Jan 5–18. Santa Clara (CA): IEEE; 2012. p. 139–142.
  • Prasetiadi AE, Karabey OH, Weickhmann C, et al. Continuously tunable substrate integrated waveguide bandpass filter in liquid crystal technology with magnetic biasing. Electron Lett. 2015;51(20):1584–1585.
  • Kaesser T, Fritzsch C, Franz M. Tunable RF filters based on liquid crystal for space applications. Crystals. 2020;10(6):455.
  • Jiang D, Liu Y, Li X, et al. Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials. IEEE Access. 2019;7:126265–126272.
  • Polat E, Reese R, Jost M, et al. Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz. IEEE Microw Wirel Compon Lett. 2019;29(1):44–46.
  • Li JF. Rethinking figure-of-merits of liquid crystals shielded coplanar waveguide phase shifters at 60 GHz. Crystals. 2021;4:444–451.
  • Li JF, Chu DP. Liquid crystal-Based enclosed coplanar waveguide phase shifter for 54–66 GHz applications. Crystals. 2019;9(12):650.
  • Tesmer H, Razzouk R, Polat E, et al. Temperature characterization of liquid crystal dielectric image line phase shifter for millimeter-wave applications. Crystals. 2021;11(1):63. DOI:10.3390/cryst11010063
  • Li JF. Bias tees integrated liquid crystals inverted microstrip phase shifter for phased array feeds. In: Proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT). Guangzhou, China; 2020 Aug 12–15; 2020 (IEEE). p. 1–5.
  • Reese R, Polat E, Tesmer H, et al. Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band. IEEE Access. 2019;7:127032–127041.
  • Qiu QL, Yu XP, Sui WQ. A K-band low-power phase shifter based on injection locked oscillator in 0.13 µm CMOS technology. J Infr Millim Terahertz Waves. 2017;38(11):1368–1386.
  • Han Z, Ohno S, Tokizane Y, et al. Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission. Opt Express. 2017;25(25):31186–31195.
  • Wang J, Tian H, Wang Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. Opt Express. 2018;26(5):5769–5776.
  • Wang L, Ge S, Hu W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Opt Express. 2017;25(20):23873–23879.
  • Zhang L, Fan YX, Liu H, et al. Hypersensitive and tunable terahertz wave switch based on non-bragg structures filled with liquid crystals. J Light Technol. 2017;35(14):3092–3098.
  • Zhang LH, Li JJ, Bao YH, et al. A broad stop-band filter based on multilayer metamaterials in the THz regime. J Infr Millim Waves. 2016;35(3):267–270.
  • Anokiwaves Inc. Introduction to all silicon millimeter-wave 5G arrays. Microwave Journal; 2019 [cited 2020 June 5]. Available from: https://www.microwavejournal.com/articles/31937-introduction-to-all-silicon-millimeter-wave-5g-arrays
  • ALCAN Systems, Dehghani MR. ALCAN’s smart antenna’s 5G opportunities and solutions. 2019 [cited 2020 June 5]. Available from: https://www.alcansystems.com/alcans-smart-antennas-5g-opportunities-and-solutions/
  • Yeh P. Optics of liquid crystal displays. In: Proceedings of the 2007 Conference on Lasers and Electro-Optics; 2007 Aug 26–31; Pacific Rim, Seoul. Korea (South): IEEE; 2007. p. 1–1.
  • Sun SY, Yu X, Wang PJ, et al. Electronically tunable liquid-crystal-based f-band phase shifter. IEEE Access. 2020;8:151065–151071.
  • DiLisi GA. An introduction to liquid crystals. San Rafael (CA): Morgan & Claypool; 2019. p. 2053–2571.
  • Yang F, Sambles JR. Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique. Appl Phys Lett. 2002;81(11):2047–2049.
  • Nobles JE, Melnyk O, Glushchenko A, et al. Effect of alignment methods on liquid crystal performance in millimeter wave devices. Eng Res Exp. 2020;2(2):025002. DOI:10.1088/2631-8695/ab82ec
  • Kawamoto H. The history of liquid-crystal displays. Proceedings of the IEEE. In: ; 2002. 2002;90(4). p. 460–500.
  • Fritzsch C, Wittek M. Recent developments in liquid crystals for microwave applications. In: Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting; 2017 July 9–14. SanDiego (CA): IEEE; 2017. p. 1217–1218.
  • Nova V, Bachiller C, Villacampa B, et al. Characterization of nematic liquid crystals at microwave frequencies. Crystals. 2020;10(12):1106. DOI:10.3390/cryst10121106
  • Sánchez JR, Nova V, Bachiller C. Characterization of nematic liquid crystal at microwave frequencies using split-cylinder resonator method. IEEE Trans Microw Theory Tech. 2019;67(7):2812–2820.
  • Schaub DE, Oliver DR. A circular patch resonator for the measurement of microwave permittivity of nematic liquid crystal. IEEE Trans Microw Theory Tech. 2011;59(7):1855–1862.
  • Yazdanpanahi M, Bulja S, Mirshekar-Syahkal D, et al. Measurement of dielectric constants of nematic liquid crystals at mm-wave frequencies using patch resonator. IEEE Trans Instrum Meas. 2010;59(12):3079–3085.
  • Mueller S, Penirschke A, Dam C, et al. Broad-band microwave characterization of ilquid crystals using a temperature-controlled coaxial transmission line. IEEE Trans Microw Theory Tech. 2005;53(6):1937–1945.
  • Bulja S, Mirshekar-Syahkal D, James R, et al. Planar transmission line method for measurement of dielectric constants of liquid crystals in 60 GHz band. In: Proceedings of the 2009 Asia Pacific Microwave Conference; 2009 Dec 7–10. Singapore: IEEE; 2009. p. 341–344.
  • Bulja S, Mirshekar-Syahkal D, James R, et al. Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength. IEEE Trans Microw Theory Tech. 2010;58(12):3493–3501.
  • Lu HB, Jing SC, Xia TY, et al. Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber. IEICE Electron Express. 2017;14(12):2017046.
  • Tomar RS, Bhartia P. New quasi-static models for the computer aided design of suspended and inverted microstrip lines. IEEE Trans Microw Theory Technol. 1987;35(4):453–457.
  • Hammerstad EO. Equations for microstrip circuit design. In: Proceedings of 1975 5th European Microwave Conference; 1975 Sept 1–4. Hamburg (Germany): IEEE; 1975. p. 268–272.
  • Abrie PLD. Design of RF and microwave amplifiers and oscillators. 2nd ed. Norwood (MA): Artech House; 2009. p. ch. 4.
  • Balanis CA. Antenna theory. 3rd ed. Hoboken (NJ): Wiley; 2005. p. ch. 14.