333
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Influence of quantum dots on the optical properties of a room temperature cholesteric liquid crystal

, , , ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 2095-2107 | Received 28 May 2022, Accepted 17 Jul 2022, Published online: 01 Aug 2022

References

  • de Gennes PG. Soft matter. Rev Mod Phys. 1992;64:645–648.
  • Smalyukh I. Liquid crystal colloids. Annu Rev Condens Matter Phys. 2018;9:207–226.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. UK: Oxford University Press; 1993.
  • Friedel G. Les états mésomorphes de la matière [The mesomorphic states of matter]. Ann Phys. 1922;18:273–474. [ French].
  • Dierking I. Textures of liquid crystals. New York (NY): John Wiley & Sons; 2006.
  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals. synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17:483–508.
  • Shuai M, Klittnick A, Shen Y, et al. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat Commu 2016;7:10394(1)–10394(8).
  • Różycka A, Bogdanowicz KA, Górska N, et al. Influence of TiO2 nanoparticles on liquid crystalline, structural and electrochemical properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino) methyl)benzylidene)-4-pentylbenzenamine. Materials. 2019;12:1097–1116.
  • Sharma A, Kumar P, Malik M. Textural and electro-optical study of a room temperature nematic liquid crystal 4̍-pentyl-4-biphenylcarbonitrile doped with metal oxide nanowires in planar and in-plane switching cell configurations. Liq Cryst. 2020;47:1663–1677.
  • Shukla RK, Chaudhary A, Bubnov A, et al. Electrically switchable birefringent self-assembled nanocomposites: ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq Crys. 2020;47:1379–1389.
  • Draude A, Dierking I. Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Ex. 2021;2:012002–012026.
  • Mody V, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharma Bioallied Sci. 2010;2:282–289.
  • Vasudevan D, Gaddam R, Trinchi A. Core–shell quantum dots: Properties and applications. J Alloys Compd. 2015;636:395–404.
  • Singh G, Fisch M, Kumar S. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review. Rep Prog Phys. 2016;79:056502–056521.
  • Hirst LS, Kirchhoff J, Inman R, et al. Quantum dot self-assembly in liquid crystal media. Proc SPIE. 2010;7618:76180F(1)–76180F(7.
  • Rodarte A, Pandolfi RJ, Ghosh S, et al. Quantum dot/liquid crystal composite materials: self-assembly driven by liquid crystal phase transition templating. J Mater Chem C. 2013;1:5527–5532.
  • Singh S. Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Crystals. 2019;9:475–491.
  • Lee WK, Hwang SJ, Cho MJ, et al. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale. 2013;5:193–199.
  • Singh UB, Pandey MB, Dhar R, et al. Effect of dispersion of CdSe quantum dots on phase transition, electrical and electro-optical properties of 4PP4OB. Liq Crys. 2016;43:1075–1082.
  • Mysliwiec J, Szukalska A, Szukalski A, et al. Liquid crystal lasers: the last decade and the future. Nanophotonics. 2021;10:2309–2346.
  • Chen LJ, Lin JD, Huang SY, et al. Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals. Adv Opt Mater. 2013;1:637–643.
  • Rodarte AL, Gray C, Hirst LS, et al. Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity. Phys Rev B. 2012;85:035430–035435.
  • Lukishova SG, Bissell LJ, Winkler J, et al. Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host. Opt Lett. 2012;37:1259–1261.
  • Chen LJ, Lin JD, Lee CR. An optically stable and tunable quantum dot nanocrystal embedded cholesteric liquid crystal composite laser. J Mater Chem C. 2014;2:4388–4394.
  • Shurpo NA, Vakshtein MS, Kamanina NV. Effect of CdSe/zns semiconductor quantum dots on the dynamic properties of nematic liquid-crystalline medium. Tech Phys Lett. 2010;36:319–321.
  • Konshina EA, Gavrish EO, Orlova AO, et al. Effect of dispersed CdSe/zns quantum dots on optical and electrical characteristics of nematic liquid crystal cells. Tech Phys Lett. 2011;37:1011–1014.
  • Kumar S, Sagar LK. CdSe quantum dots in a columnar matrix. Chem Commun. 2011;47:12182–12184.
  • Singh DP, Gupta SK, Pandey S, et al. Influence of CdSe quantum dot on molecular/ionic relaxation phenomenon and change in physical parameters of ferroelectric liquid crystal. Liq Cryst. 2015;42:1159–1168.
  • Kumar A, Biradar AM. Effect of cadmium telluride quantum dots on the dielectric and electro – optical properties of ferroelectric liquid crystals. Phys Rev E. 2011;83:041708–041715.
  • Kumar A, Prakash J, Khan MT, et al. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010;97:163111–163113.
  • Pandey FP, Rastogi A, Singh S. Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′- heptyl-4-biphenylcarbonitrile (7CB). Opt Mater. 2020;105:109849–109853.
  • Kumar A, Prakash J, Deshmukh D, et al. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. App Phys Lett. 2012;100:134101–134104.
  • Cordoyiannis G, Lavric M, Maja T, et al. Quantum dot-driven stabilization of liquid-crystalline blue phases. Front Phys. 2020;8:1–8.
  • Cordoyiannis G, Losada-Pérez P, Tripathi CP, et al. Blue phase III widening in CE6- dispersed surface functionalised CdSe nanoparticles. Liq Cryst. 2010;37:1419–1426.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24:6260–6276.
  • Huang Y, Zhou Y, Wu ST. Broadband circular polarizer using stacked chiral polymer films. Opt Express. 2007;15:6417–6422.
  • Lin SH, Shyu CY, Liu JH, et al. Photoerasable and photorewritable spatially tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant. Opt Express. 2010;18:9496–94104.
  • Wood SM, Fells JA, Elston SJ, et al. Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold. Macromolecules. 2016;49:8643–8652.
  • Kurochkin O, Buchnev O, Iljin A, et al. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J Opt A Pure Appl Opt. 2009;11:1–5.
  • Singh BP, Manohar R. Nematic liquid crystals dispersed with multiwalled carbon nanotubes: a perspective way for improving the response time and birefringence of electro-optical devices. Intr J Phys Sci. 2021;25:517–538.
  • Tripathi PK, Yadav SP, Singh S. Impact of silica nanoparticles dispersion on the dielectric and electro-optical properties and absorption spectra of host ferroelectric liquid crystal. Liq Cryst. 2018;45:953–960.
  • Mirzaei J, Urbanski M, Yu K, et al. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J Mater Chem. 2011;21:12710–12716.
  • Chen SC, Lin JD, Lee CR, et al. Multi-Wavelength laser tuning based on cholesteric liquid crystals with nanoparticles. J Phys D Appl Phys. 2016;49:165102–165108.
  • Singh UB, Dhar R, Pandey S, et al. Electro-Optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites. AIP Adv. 2014;4:117112–117120.
  • Lopatina LM, Selinger J. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev Lett. 2009;102:197802–197805.
  • Chemingui M, Singh UB, Yadav N, et al. Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J Mol Liq. 2020;319:114299–114310.
  • Dierking I, Scalia G, Morales P, et al. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater. 2004;16:865–873.
  • Rodarte AL, Cisneros F, Hein JE, et al. Quantum dot/liquid crystal nanocomposites in photonic devices. Photonics. 2015;2:855–864.
  • Mirzaei J, Reznikov M, Hegmann T. Quantum dots as liquid crystal dopants. J Mater Chem. 2012;22:22350–22365.
  • Singh DP, Misra AK, Achalkumar AS, et al. Transmuting the blue fluorescence of hekates mesogens derived from tris(nsalicylideneaniline)s core via ZnS/zns:mn2+ semiconductor quantum dots dispersion. J Lumin. 2019;210:7–13.
  • Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3:37–46.
  • Hassanien AS, Akl AA. Effect of Se addition on optical and electrical properties of chalcogenide CdSse thin films. Superlattice Microstruct. 2016;89:153–169.
  • Pathak G, Hegde G, Prasad V. Octadecylamine-Capped CdSe/zns quantum dot dispersed cholesteric liquid crystal for potential display application: Investigation on photoluminescence and UV absorbance. Liq Cryst. 2021;48:579–587.
  • Wang C, Kodaimati MS, Schatz GC, et al. The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. Chem Commun. 2017;53:1981–1984.
  • Nelson HD, Gamelin DR. Valence-Band electronic structures of Cu+ -Doped ZnS, alloyed Cu-In-Zn-S, and ternary CuIns2 nanocrystals: a unified description of photoluminescence across compositions. J Phys Chem C. 2018;122:18124–18133.
  • Kumar A, Tripathi S, Deshmukh AD, et al. Time evolution photoluminescence studies of QD doped ferroelectric liquid crystals. J Phys D Appl Phys. 2013;46:195302–195308.
  • Khan AA, Dinesha G, Dabera MA, et al. Tunable scattering from liquid crystal devices using carbon nanotubes network electrodes. Nanoscale. 2015;7:330–336.
  • Gao S, Wang J, Li W, et al. Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals. Photonics Res. 2020;8:642–647.
  • Roy JS, Majumder TP, Dąbrowski R. Enhanced photoluminescence of antiferroelectric liquid crystals doped with sodium titanate nanoparticles. Funct Mater Lett. 2014;7:1450054–1450057.
  • Tong X, Zhao Y. Liquid-Crystal gel-dispersed quantum dots: reversible modulation of photoluminescence intensity using an electric field. J Am Chem Soc. 2007;129:6372–6373.
  • Kumar A, Prakash J, Mehta DS, et al. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. App Phys Lett. 2009;95:023117–023120.
  • Lamees AA, Farah GK, Rashad A, et al. Improvement photoluminescence of nematic liquid crystal doped with gold nanoparticles. AIP Conf Proc 2019;2190:020082(1)–020082(4).
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle–liquid crystal composites. Nanoscale. 2014;6:7743–7756.
  • Bobrovsky A, Mochalov K, Oleinikov V, et al. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots. Adv Mater. 2012;24:6216–6222.
  • Bugakov MA, Samokhvalov PS, Shibaev VP, et al. Hybrid fluorescent cholesteric materials with controllable light emission containing CdSe/zns quantum dots stabilized by liquid crystalline block copolymer. Opt Mater Express. 2021;11:1842–1851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.