154
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Gamma-radiation exposure-induced modifications in the thermal, dielectric, and electro-optical properties of two-room temperature antiferroelectric liquid crystal mixtures

, , , &
Pages 2108-2120 | Received 29 May 2022, Accepted 19 Jul 2022, Published online: 02 Aug 2022

References

  • Gennes PD, Prost J. The physics of liquid crystals. Oxford, UK: Clarendon Press; 1993.
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. 2007;6:929–938.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12(6):1387–1412.
  • Garbovskiy Y, Zagorodnii V, Krivosik P, et al. Liquid crystal phase shifters at millimeter wave frequencies. J Appl Phys. 2012;111(5):054504. DOI:10.1063/1.3691202
  • Yaghmaee P, Karabey OH, Bates B, et al. Electrically tuned microwave devices using liquid crystal technology. Int J Antennas Propag. 2013;2013:1–9.
  • Garbovskiy Y, Glushchenko I. Nano-objects and ions in liquid crystals: ion trapping effect and related phenomena. Crystals. 2015;5(4):501–533.
  • Neighbors H, Salazar G, Steele G, et al. OLED technology evaluation for space applications [Internet]. 2015. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150016975.pdf.
  • Alfassi ZB, Kushelevsky AP, Feldman L. The effect of γ irradiation of solutions of cholesteric liquid crystals on the color transition temperature. Mol Cryst Liq Cryst. 1977;39(1–2):33–37.
  • Kurik MV, Lavrentovich OD, Linev VA, et al. Effect of ionising radiation on the phase diagrams of liquid crystals. Russ J Phys Chem. 1987;61:851–853.
  • Srivastava SL, and Dhar R. Disordering by γ-irradiation on long range order of liquid crystalline phases of cholesteryl esters. AIP Conf Proc. 1992;286:282–284.
  • Srivastava SL, Dhar R. Effect of γ-irradiation on liquid crystalline properties of cholesteryl pelargonate (nonanoate). Radiat Phys Chem. 1996;47(2):287–293.
  • Srivastava SL, Dhar R, Kurik MV. Change in optical and dielectric properties of cholesteryl myristate on gamma irradiation. Mol Mater. 2000;12:295–304.
  • Klosowicz SJ, Alfassi Z. Progress in studies on the effect of ionizing radiation on the physical properties of cholesteric liquid crystals. Mol Cryst Liq Cryst. 1994;239(1):181–193.
  • Rath MC, Sarkar SK, Wadhawan VK, et al. Electron beam irradiation induced changes in liquid-crystal compound 5CB. Opto-Electron Rev. 2008;16(4):399–403. DOI:10.2478/s11772-008-0036-x
  • Verma R, Dhar R, Rath MC, et al. Optimization of the display parameters of a room temperature nematic material (6CHBT) by using electron beam irradiation. IEEE/OSA J Disp Technol. 2010;6(1):8–13. DOI:10.1109/JDT.2009.2033393
  • Dhar R, Verma R, Rath MC, et al. Tuning of the electrical parameters of a twisted-nematic display material by using electron beam irradiation. Appl Phys Lett. 2008;92(1):1–4. DOI:10.1063/1.2829882
  • Verma R, Dhar R, Dabrowski R, et al. Electron beam irradiation induced transformations in the electro-optical and dielectric properties of a twisted-nematic display material 4′-pentyl-4-cyanobiphenyl (5CB). J Phys D Appl Phys. 2009;42(8):085503. DOI:10.1088/0022-3727/42/8/085503
  • Verma R, Dhar R, Agrawal VK, et al. Electron beam irradiation-induced transformations in the electrical properties of 4’-octyl-4-cyanobiphenyl (8CB). Liq Cryst. 2009;36(9):1003–1014. DOI:10.1080/02678290903220972
  • Verma R, Tripathi A, Dhar R. Enhancement in the thermal stability of the mesophases of 4-n-(decyloxy) benzoic acid due to li ion beam irradiation. J Mol Liq. 2013;177:409–415.
  • Verma R, Dabrowski R, Zurowska M, et al. Enhancement of the properties and mesophases stability after the electron beam irradiation on a racemic anti-ferroelectric liquid crystalline mixture. Liq Cryst. 2016;43(5):606–614. DOI:10.1080/02678292.2015.1127439
  • Debnath A, Goswami D, Singha BK, et al. Effect of γ-irradiation on the display parameters of a room temperature ferroelectric liquid crystal mixture. Liq Cryst. 2021;48(7):935–944. DOI:10.1080/02678292.2020.1827462
  • Debnath A, Singha BK, Goswami D, et al. Effect of γ-irradiation on various important physical properties of a room temperature ferroelectric liquid crystal mixture and its silver nanocomposite. J Mol Liq. 2021;330:115628.
  • Debnath A, Mandal PK. Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures. Liq Cryst. 2017;44(14–15):2192–2202.
  • Debnath A, Mandal PK. Dielectric properties of four room temperature ferroelectric and antiferroelectric multi-component liquid crystalline mixtures. Liq Cryst. 2019;46(2):234–248.
  • Kumar A, Mishra RK, Bhardwaj YK, et al. Probing electronic environment in gamma irradiated sodium borosilicate glass and simulated waste glass: a perturbed angular correlation spectroscopy study. J Radioanal Nucl Chem. 2021;328(2):569–576. DOI:10.1007/s10967-021-07686-z
  • Almatari M. Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system. Radiochim Acta. 2019;107(6):517–522.
  • Singh KJ, Singh N, Kaundal RS, et al. Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2008;266(6):944–948. DOI:10.1016/j.nimb.2008.02.004
  • Al-Hadeethi Y, Sayyed MI. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram Int. 2019;45(18):24858–24864.
  • Al-Hadeethi Y, Sayyed MI, Tijani SA. Gamma radiation attenuation properties of tellurite glasses: a comparative study. Nucl Eng Technol. 2019;51(8):2005–2012.
  • Rammah YS, Ali AA, El-Agawany FI. γ-Ray shielding features and crystallization of TiO2 borotellurite glasses. J Non Cryst Solids. 2019;526:119720.
  • Dabrowski R. Synthesized and characterized by the group of [results unpublished]. Warsaw, Poland: Institute of Chemistry, Military University of Technology.
  • Żurowska M, Dąbrowski R, Dziaduszek J, et al. Synthesis and mesomorphic properties of chiral esters comprising partially fluorinated alkoxyalkoxy terminal chains and a 1-methylheptyl chiral moiety. Mol Cryst Liq Cryst. 2008;495(1):145/[497]–157/[509]. DOI:10.1080/15421400802432428
  • Miyasato K, Abe S, Takezoe H, et al. Direct method with triangular waves for measuring spontaneous polarization in ferroelectric liquid crystals. Japanese J Appl Physics. 1983;22(Part 2, No. 10):661–663. Part 2 Lett. DOI:10.1143/JJAP.22.L661.
  • Debnath A, Mandal PK, Węglowska D, et al. Induction of a room temperature ferroelectric SmC* phase in binary mixtures with moderate spontaneous polarization and sub-millisecond switching time. RSC Adv. 2016;6(87):84369–84378. DOI:10.1039/C6RA11238B
  • Debnath A, Sinha D, Mandal PK. Wide range room temperature electroclinic liquid crystal mixture with large induced tilt and very small layer contraction. J Appl Phys. 2016;119(12):124103.
  • Baikalov VA, Beresnev LA, Blinov LM. Measures of the molecular tilt angle and optical anisotropy in ferroelectric liquid crystals. Mol Cryst Liq Cryst. 1985;127(1):397–406.
  • Kushelevsky AP, Feldman L, Alfassi ZB. Gamma rays modification of encapsulated liquid crystals temperature range. Mol Cryst Liq Cryst. 1976;35(3–4):353–355.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267(5613):673–679.
  • Pozhidaev E, Osipov M, Chigrinov V, et al. Rotational viscosity of the smectic C* phase of ferroelectric liquid crystals. Sov Phys JETP. 1988;67:125–132.
  • Beresnev LA, Chigrinovs VG, Dergachevt DI, et al. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liq Cryst. 1989;5(4):1171–1177. DOI:10.1080/02678298908026421
  • Pozhidaev E, Chigrinov V, Li X. Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale. Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap. 2006;45(2A):875–882.
  • Blinov LM, Chigrinov VG. Electrooptic effects in liquid crystal materials. Newyork: Springer; 1994.
  • Guo Q, Srivastava AK, Pozhidaev EP, et al. Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy. Appl Phys Express. 2014;7(2):021701. DOI:10.7567/APEX.7.021701
  • Koden M, Nakagawa K, Ishii Y, et al. The effect of fluorinated alkyl group on mesophase thermal stabilities. Mol Cryst Liq Cryst Lett. 1989;6:185–190.
  • Hird M, Toyne KJ. Fluoro substitution in thermotropic liquid crystals. Mol Cryst Liq Cryst Sci Technol Sect a Mol Cryst Liq Cryst. 1998;323:1–67.
  • V PF, Suvorova AM, V LA, et al. Electrooptic and dielectric properties of ferroelectric liquid crystal/single walled carbon nanotubes dispersions confined in thin cells. Chem Phys Lett. 2009;479(4–6):206–210. DOI:10.1016/j.cplett.2009.08.005
  • Podgornov FV, Ryzhkova AV, Haase W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl Phys Lett. 2010;97(21):2008–2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.