234
Views
2
CrossRef citations to date
0
Altmetric
Invited Articles

Improving experimental procedures for assessing electrical properties of advanced liquid crystal materials

ORCID Icon, ORCID Icon & ORCID Icon
Pages 140-148 | Received 24 Jun 2022, Published online: 26 Aug 2022

References

  • Schenning APHJ, Crawford GP, Broer DJ, editors. Liquid crystal sensors. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2018. p. 164.
  • Jones C. The fiftieth anniversary of the liquid crystal display. Liq Cryst Today. 2018;27(3):44–70.
  • Chen HW, Lee JH, Lin BY, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Sci Appl. 2018;7:17168.
  • Xiong J, Hsiang EL, He Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light: Sci Appl. 2021;10(1):216.
  • Wang YJ, Lin YH. Liquid crystal technology for vergence-accommodation conflicts in augmented reality and virtual reality systems: a review. Liq Cryst Rev. 2021;9(1):35–64.
  • d’Alessandro A, Asquini R. Light propagation in confined nematic liquid crystals and device applications. Appl Sci. 2021;11(18):8713.
  • Lin YH, Wang YJ, Reshetnyak V. Liquid crystal lenses with tunable focal length. Liq Cryst Rev. 2017;5(2):111–143.
  • Otón JM, Otón E, QuintanaXand Geday MA. Liquid-crystal phase-only devices. J Mol Liq. 2018;267:469–483.
  • Abdulhalim I. Non-display bio-optic applications of liquid crystals. Liq Cryst Today. 2011;20(2):44–60.
  • Morris R, Jones C, Nagaraj M. Liquid crystal devices for beam steering applications. Micromach. 2021;12:247.
  • Lininger A, Zhu AY, Park JS, et al. Optical properties of metasurfaces infiltrated with liquid crystals. Proc Natl Acad Sci. 2020;117(34):202006336.
  • Jeng SC. Applications of Tamm plasmon-liquid crystal devices. Liq Cryst. 2020;47:1223–1231.
  • Camley R, Celinski Z, Garbovskiy Y, et al. Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges. Liq Cryst Rev. 2018;6(1):17–52.
  • Jakoby R, Gaebler A, Weickhmann C. Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals. 2020;10:514.
  • Geis MW, Bos PJ, Liberman V, et al. Broadband optical switch based on liquid crystal dynamic scattering. Opt Express. 2016;24(13):13812–13823.
  • Dabrowski R, Dziaduszek J, Bozetka J, et al. Fluorinated smectics – new liquid crystalline medium for smart windows and memory displays. J Mol Liq. 2017;267:415–427.
  • Castellón E, Levy D, editors. Smart windows based on liquid crystal dispersions. Weinheim (Germany): Wiley-VCH; chapter 5.4., Transparent conductive materials. 2018. p. 337–365.
  • Chigrinov VG. Liquid crystal devices: physics and applications. Boston (MA): Artech House; 1999.
  • Naemura S. Electrical properties of liquid crystal materials for display applications. Mat Res Soc Symp Proc. 1999;559:263–274.
  • Neyts K, Beunis F. Handbook of liquid crystals: physical properties and phase behavior of liquid crystals. Vol. 2. Germany: Wiley-VCH; 2014. Chapter 11, Ion transport in liquid crystals. p. 357–382.
  • Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Ex. 2021;2(1):012004.
  • Goodby JW, Cowling SJ. Conception, discovery, invention, serendipity and consortia: cyanobiphenyls and beyond. Crystals. 2022;12:825.
  • Colpaert C, Maximus B, Meyere D. Adequate measuring techniques for ions in liquid crystal layers. Liq Cryst. 1996;21(1):133–142.
  • Vaxiviere J, Labroo B, Martinot-Lagarde P. Ion bump in the ferroelectric liquid crystal domains reversal current. Mol Cryst Liq Cryst. 1989;173:61–73.
  • Sugimura A, Matsui N, Takahashi Y, et al. Transient currents in nematic liquid crystals. Phys Rev B. 1991;43(10):8272–8276.
  • Khazimullin MV, Lebedev YA. Influence of dielectric layers on estimates of diffusion coefficients and concentrations of ions from impedance spectroscopy. Phys Rev E. 2019;100(6):062601.
  • Sawada A, TarumiKand Naemura S, Naemura S. Novel characterization method of ions in liquid crystal materials by complex dielectric constant measurements. Jpn J Appl Phys. 1999;38(3R):1423–1427.
  • Karaawi AR, Gavrilyak MV, Boronin VA, et al. Direct current electric conductivity of ferroelectric liquid crystals–gold nanoparticles dispersion measured with capacitive current technique. Liq Cryst. 2020;47(10):1507–1515.
  • Barbero G, Evangelista LR. Adsorption phenomena and anchoring energy in nematic liquid crystals. Boca Raton (FL): Taylor & Francis; 2006.
  • Inoue M. Review of various measurement methodologies of migration ion influence on LCD image quality and new measurement proposal beyond LCD materials. J Soc Inf Disp. 2020;28(1):92–110.
  • Mizusaki M, Ishihara S. A novel technique for determination of residual direct-current voltage of liquid crystal cells with vertical and in-plane electric fields. Symmetry. 2021;13:816.
  • Sasaki N. Nobuyoshi sasaki a new measurement method for ion density in TFT-LCD panels, molecular crystals and liquid crystals science and technology. Section A Mol Cryst Liq Cryst. 2001;367(1):671–679.
  • Dhara S, Madhusudana NV. Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells. J Appl Phys. 2001;90(7):3483–3488.
  • Kovalchuk OV. Adsorption of ions and thickness dependence of conductivity in liquid crystal. Semicond Phys Quantum Electron Optoelectron. 2011;14(4):452–455.
  • Kumar A, Varshney D, Prakash J. Role of ionic contribution in dielectric behaviour of a nematic liquid crystal with variable cell thickness. J Mol Liq. 2020;303:112520.
  • Shukla RK, Chaudhary A, Bubnov A, et al. Multiwalled carbon nanotubes-ferroelectric liquid crystal nanocomposites: effect of cell thickness and dopant concentration on electro-optic and dielectric behaviour. Liq Cryst. 2018;45(11):1672–1681.
  • Garbovskiy Y. Ion capturing/ion releasing films and nanoparticles in liquid crystal devices. Appl Phys Lett. 2017;110(4):041103.
  • Garbovskiy Y. Kinetics of ion-capturing/ion-releasing processes in liquid crystal devices utilizing contaminated nanoparticles and alignment films. Nanomaterials. 2018;8(2):59.
  • Garbovskiy Y. Ions and size effects in nanoparticle/liquid crystal colloids sandwiched between two substrates. The case of two types of fully ionized species. Chem Phys Lett. 2017;679:77–85.
  • Webb D, Garbovskiy Y. Overlooked ionic phenomena affecting the electrical conductivity of liquid crystals. Eng Proc. 2021;11:1.
  • Mada H, Osajima K. Time response of a nematic liquid‐crystal cell in a switched dc electric field. J Appl Phys. 1986;60(9):3111–3113.
  • Takahashi S. The investigation of a dc induced transient optical 30‐Hz element in twisted nematic liquid‐crystal displays. J Appl Phys. 1991;70(10):5346–5350.
  • Sugimura A, Zhong-Can OY. Dynamic behaviour of electric properties in a liquid crystal cell with polyimide boundaries. Liq Cryst. 1993;14(2):539–544.
  • Ciuchi F, Mazzulla A, Pane A, et al. Ac and dc electro-optical response of planar aligned liquid crystal cells. Appl Phys Lett. 2007;91(23):232902.
  • Palomares LO, Reyes JA, Barbero G. Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities. Phys Lett A. 2004;333(1–2):157–163.
  • Macdonald JR. Impedance spectroscopy, emphasizing solid materials and systems. New York (NY): John Wiley & Sons; 1987. p. 368.
  • Twarowski AJ, Albrecht AC. Depletion layer studies in organic films: low frequency capacitance measurements in polycrystalline tetracene. J Chem Phys. 1979;70(5):2255–2261.
  • Koval’Chuk AV. Relaxation processes and charge transport across liquid crystals – electrode interface. J Phys. 2001;13(24):10333–10345.
  • Senyuk BI, Smalyukh II, Lavrentovich OD. Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals. Opt Lett. 2005;30(4):349–351.
  • Shcherbinin DP, Konshina EA. Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals. Beilstein J Nanotechnol. 2017;8:2766–2770.
  • Yaroshchuk OV, Kiselev AD, Kravchuk RM. Liquid-crystal anchoring transitions on aligning substrates processed by a plasma beam. Phys Rev E. 2008;77(3):031706.
  • Garbovskiy Y, Glushchenko A. Ferroelectric nanoparticles in liquid crystals: recent progress and current challenges. Nanomaterials. 2017;7:361.
  • Garbovskiy Y, Emelyanenko AV, Glushchenko A. Inverse “guest–host” effect: ferroelectric nanoparticles mediated switching of nematic liquid crystals. Nanoscale. 2020;12:16438–16442.
  • Lagerwall JPF, Scalia G, editors. Liquid crystals with nano and microparticles. Vol. 2. Singapore: World Scientific; 2016. ISBN 9789814619257. ISBN 9789814619257
  • Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liq Cryst. 2019;46(13–14):2057–2074.
  • Garbovskiy Y. Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals. Appl Phys Lett. 2016;108(12):121104.
  • Shukla RK, Liebig CM, Evans DR, et al. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbo3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014;4(36):18529–18536.
  • Basu R, Garvey A. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl Phys Lett. 2014;105(15):151905.
  • Garbovskiy Y, Glushchenko I. Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals. Appl Phys Lett. 2015;107(4):041106.
  • Hsiao Y-C, Huang S-M, Yeh E-R, et al. Temperature dependent electrical and dielectric properties of nematic liquid crystals doped with ferroelectric particles. Displays. 2016;44:61–65.
  • Lalik S, Deptuch A, Jaworska-Gołab T, et al. Modification of AFLC physical properties by doping with BaTio 3 particles. J Phys Chem B. 2020;124(28):6055–6073. DOI:10.1021/acs.jpcb.0c02401
  • Salah MB, Nasri R, Alharbi AN, et al. Thermotropic liquid crystal doped with ferroelectric nanoparticles: electrical behavior and ion trapping phenomenon. J Mol Liq. 2022;357:119142.
  • Murakami S, Naito H. Electrode and interface polarizations in nematic liquid crystal cells. Jpn J Appl Phys. 1997;36(4R):2222–2225.
  • Garbovskiy Y. Time-Dependent electrical properties of liquid crystal cells: unravelling the origin of ion generation. Liq Cryst. 2018;45(10):1540–1548.
  • Furuichi K, Xu J, Inoue M, et al. Effect of ion trapping films on the electrooptic characteristics of polymer-stabilized ferroelectric liquid crystal display exhibiting V-shaped switching. Jpn J Appl Phys. 2003;42(7R):4411–4415.
  • Huang Y, Bos PJ, Bhowmik A. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices. J Appl Phys. 2010;108(6):064502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.