143
Views
1
CrossRef citations to date
0
Altmetric
Invited Articles

Tunable spectral manifestation of Tamm plasmon-polaritons in a hybrid structure with 2d black phosphorus in the terahertz range

, , , , &
Pages 36-44 | Received 03 Jul 2022, Published online: 24 Aug 2022

References

  • Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014;1(2):025001.
  • Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. 2014;5(1):4458.
  • Wang X, Jones AM, Seyler KL, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol. 2015;10(6):517–521.
  • Lan S, Rodrigues S, Kang L, et al. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics. 2016;3(7):1176–1181.
  • Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033–4041.
  • Mittendorff M, Suess RJL, Murphy TE. Optical gating of black phosphorus for terahertz detection. Nano Lett. 2017;17(9):5811–5816.
  • Doha MH, Batista JIS, Rawwagah AF, et al. Integration of multi-layer black phosphorus into photo-conductive antennas for THz emission. J Appl Phys. 2020;128(6):063104.
  • Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors. Adv Mater. 2015;27(37):5567–5572.
  • Guo W, Dong Z, Xu Y, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv Sci. 2020;7(5):1902699.
  • Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys. 2010;107(11):111101.
  • Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photon Rev. 2011;5(1):124–166.
  • Tonouchi M. Cutting-edge terahertz technology. Nat Photonics. 2007;1(2):97–105.
  • Low T, Roldan R, Wang H, et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys Rev Lett. 2014;113(10):106802.
  • Liu Z, Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Lett. 2016;16(6):3457–3462.
  • Jin F, Roldán R, Katsnelson MI, et al. Plasmonics in strained monolayer black phosphorus. Phys Rev B. 2015;92(11):115440.
  • Pan J, Zhu W, Zheng H, et al. Exploiting black phosphorus based-Tamm plasmons in the terahertz region. Opt Express. 2020;28(9):13443.
  • Gaspar-Armenta A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. J Opt Soc Am B. 2003;20(11):2349–2354.
  • Vinogradov AP, Dorofeenko AV, Erokhin SG, et al. Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys Rev B. 2006;74(4):045128.
  • Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B. 2007;76(16):165415.
  • Sasin ME, Seisyan RP, Kalitteevski MA, et al. Tamm plasmon polaritons: slow and spatially compact light. Appl Phys Lett. 2008;92(25):251112.
  • Sasin ME, Seisyan RP, Kaliteevski MA, et al. Tamm plasmon-polaritons: first experimental observation. Superlattices Microstruct. 2010;47(1):44–49.
  • Zhang WL, Wang F, Rao YJ, et al. Novel sensing concept based on optical Tamm plasmon. Opt Exp. 2014;22(12):14524–14529.
  • Auguié B, Fuertes MC, Angelomé PC, et al. Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics. 2014;1(9):775–780.
  • Kumar S, Maji PS, Das R. Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sens Actuators A. 2017;260:10–15.
  • Balevicius Z. Strong coupling between Tamm and surface plasmons for advanced optical bio-sensing. Coatings. 2020;10(12):1187–1197.
  • Buzavaite-Verteliene E, Plikusiene I, Tolenis T, et al. Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions. Opt Express. 2020;28(20):29033–29043.
  • Zhang WL, Yu SF. Bistable switching using an optical Tamm cavity with a Kerr medium. Opt Commun. 2010;283(12):2622–2626.
  • Yang Z-Y, Ishii S, Yokoyama T, et al. Tamm plasmon selective thermal emitters. Opt Lett. 2016;41(19):4453–4456.
  • Yang Z-Y, Ishii S, Yokoyama T, et al. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons. ACS Photonics. 2017;4(9):2212–2219.
  • Lee BJ, Fu CJ, Zhang ZM. Coherent thermal emission from one-dimensional photonic crystals. Appl Phys Lett. 2005;87(7):071904.
  • Gazzano O, Vasconcellos SM, Gauthron K, et al. Single photon source using confined Tamm plasmon modes. Appl Phys Lett. 2012;100(23):232111.
  • Jiménez-Solano A, Galisteo-López JF, Míguez H. Flexible and adaptable light-emitting coatings for arbitrary metal surfaces based on optical Tamm mode coupling. Adv Opt Mater. 2018;6(1):1700560.
  • Cheng HC, Kuo CY, Hung YJ, et al. Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl. 2018;9(6):064034.
  • Timofeev IV, Pankin PS, Vetrov SY, et al. Chiral optical Tamm states: temporal coupled-mode theory. Crystals. 2017;7(4):113.
  • Buchnev O, Belosludtsev A, Reshetnyak V, et al. Observing and controlling a Tamm plasmon at the interface with a metasurface. Nanophotonics. 2020;9(4):897–903.
  • Pankin PS, Sutormin VS, Gunyakov VA, et al. Experimental implementation of tunable hybrid Tamm-microcavity modes. Appl Phys Lett. 2021;119(16):161107.
  • Bovard BG. Rugate filter theory: an overview. Appl Opt. 1993;32(28):5427–5442.
  • Southwell WH, Hall RL. Rugate filter sidelobe suppression using quintic and rugated quintic matching layers. Appl Opt. 1989;28(14):2949–2951.
  • Bartholomew CS, Morrow MD, Betz HT, et al. Rugate filters by laser flash evaporation of SiOxny on room-temperature polycarbonate. J Vac Sci Technol A. 1988;6(3):1703–1707.
  • Gunning WJ, Hall RL, Woodberry FJ, et al. Codeposition of continuous composition rugate filters. Appl Opt. 1989;28(14):2945–2948.
  • Jankowski AF, Schrawyer LR, Perry PL. Reactive sputtering of molybdenum-oxide gradient-index filters. J Vac Sci Technol A. 1991;9(3):1184–1187.
  • Lorenzo E, Oton CJ, Capuj NE, et al. Porous silicon-based rugate filters. Appl Opt. 2005;44(26):5415–5421.
  • Swart PL, Bulkin PV, Lacquet BM. Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx. Opt Eng. 1997;36(4):1214–1219.
  • Kaminska K, Brown T, Beydaghyan G, et al. Rugate filters grown by glancing angle deposition. In: Lessard R, Lampropoulos G, Schini G, editors. Applications of photonic technology. Vol. 5. Bellingham (WA): SPIE; 2003. p. 4833:633–639.
  • Berger MG, Arens-Fischer R, Thönissen M, et al. Dielectric filters made of PS: advanced performance by oxidation and new layer structures. Thin Solid Films. 1997;297(1–2):237–240.
  • Kaminska K, Brown T, Beydaghyan G, et al. Vacuum evaporated porous silicon photonic interference filters. Appl Opt. 2003;42(20):4212–4219.
  • Keshavarzi S, Kovacs A, Abdo M, et al. Porous silicon based rugate filter wheel for multispectral imaging applications. ECS J Sol St Sci Tech. 2019;8:Q43–Q49.
  • Ilyasa S, Böckinga T, Kilianb K, et al. Porous silicon based narrow line-width rugate filters. Opt Mater. 2007;29(6):619–622.
  • Verly PG. Hybrid approach for rugate filter design. Appl Opt. 2008;47(13):C172–C178.
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Yariv A, Yeh P. Optical waves in crystals. Propagation and control of laser radiation. New York (NY): Wiley; 1984.
  • Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J. 1969;48(9):2909–2947.
  • Karpov SY, Stolyarov SN. Propagation and transformation of electromagnetic waves in one-dimensional periodic structures. Phys Usp. 1993;36(1):1–22.
  • Debu DT, Bauman SJ, French D, et al. Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface. Sci Rep. 2018;8:3224.
  • Li X, Tan N, Pivnenko M, et al. High-birefringence nematic liquid crystal for broadband THz applications. Liq Cryst. 2016;43(7):955–962.
  • Zhou H, Yang G, Wang K, et al. Multiple optical Tamm states at a metal–dielectric mirror interface. Opt Lett. 2010;35(24):4112–4114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.