258
Views
6
CrossRef citations to date
0
Altmetric
Invited Articles

Intensity-dependent optical nonlinearities of composite materials made of ionic liquid crystal glass and bimetallic nanoparticles

, , , , , , & ORCID Icon show all
Pages 174-180 | Received 13 Jul 2022, Published online: 30 Sep 2022

References

  • 2022: the UN International Year Of Glass https://www.iyog2022.org/
  • Doremus RH. Glass science. 2nd ed. New York (USA): John Wiley & Sons; 1994.
  • Axinte E. Glasses as engineering materials: a review. Mater Des. 2011;32(4):1717–1732.
  • Jones JR, Brauer DS, Hupa L, et al. Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glass Sci. 2016;7(4):423–434.
  • Cannio M, Bellucci D, Roether JA, et al. Bioactive glass applications: a literature review of human clinical trials. Mater. 2021;14(18):5440.
  • Ballato J, Dragic P. Glass: the carrier of light – a brief history of optical fiber. Int J Appl Glass Sci. 2016;7(4):413–422.
  • Ballato J, Dragic PD. Glass: the carrier of light—part II—a brief look into the future of optical fiber. Int J Appl Glass Sci. 2021;12(1):3–24.
  • Yamane M, Asahara Y. Glasses for photonics. New York (USA): Cambridge University; 2000.
  • Petzold U. Optical glass: a high-tech base material as key enabler for photonics. In: Sglavo V, editor. Advances in glass science and technology. London: IntechOpen; 2018. DOI:10.5772/intechopen.73925
  • Mauro JC. Grand challenges in glass science. Front Mater. 2014;1. DOI:10.3389/fmats.2014.00020
  • Sglavo Vincenzo M, editor. Advances in glass science and technology. London: IntechOpen; 2018. DOI:10.5772/intechopen.69580
  • Gujral A, Yu L, Ediger MD. Anisotropic organic glasses. Curr Opin Solid State Mater Sci. 2018;22(2):49–57.
  • Bunning TJ, Mather PT, Hood PJ, et al. Mid-wavelength IR (MWIR) polarizers from glassy cholesteric liquid crystals. Liq Cryst. 1999;26(4):557–565.
  • Chen HMP, Ou JJ, Chen SH. Lassy liquid crystals as self-organized films for robust optoelectronic devices [Nanoscience with liquid crystals]. Berlin: Springer International Publishing; 2014. pp. 179–208.
  • Donth EJ. The glass transition: relaxation dynamics in liquids and disordered media. Berlin: Springer; 2001.
  • Dierking I. Experimental investigations of a chiral smectic glass‐forming liquid crystal. Liq Cryst. 2008;35(8):1015–1022.
  • Shi H, Chen Shaw H. Novel glassy nematic and chiral nematic oligomers derived from 1,3,5-cyclohexanetricarboxylic and (1R,3S)-(+)-camphoric acids. Liq Cryst. 1994;17(3):413–428.
  • Nakanishi S, Ueda M. Synthesis of novel glass-forming liquid crystals containing acrylic acid trimer core unit and mesogenic moiety, and their use in cholesteric reflection films. Polym J. 2007;39(3):252–258.
  • Seshadri T, Haupt HJ, Flörke U, et al. Novel cholesteric glassy liquid crystals of monosubstituted ferrocenes: synthesis and selective reflection properties of a dimesogen, and crystal structure of a monomesogen. Liq Cryst. 2007;34(1):33–47.
  • Roohnikan M, Ebrahimi M, Ghaffarian SR, et al. Supramolecular self-assembly of a novel hydrogen-bonded cholesteric liquid crystal exhibiting macromolecular behaviour. Liq Cryst. 2013;40(3):314–320.
  • Wallace JU, Shestopalov A, Kosc T, et al. Scalable synthesis of cholesteric glassy liquid crystals. Ind Eng Chem Res. 2018;57(12):4470–4473.
  • Moura Ramos JJ, Diogo Hermínio P. Phase behavior and slow molecular dynamics in the glassy state and in the glass transformation of a nematic liquid crystal: 4CFPB. Liq Cryst. 2020;47(4):604–617.
  • Zhou JY, Wu CG, Jia YG. Preparation and optical properties of linear polysiloxane-based glassy cholesteric liquid crystals with green reflected colour. Liq Cryst. 2021;48(2):215–222.
  • Chen HMP, Katsis D, Chen SH. Deterministic synthesis and optical properties of glassy chiral-nematic liquid crystals. Chem Mater. 2003;15(13):2534–2542.
  • Akiyama H, Mallia VA, Tamaoki N. Synthesis, liquid-crystalline properties, and photo-optical studies of photoresponsive oligomeric mesogens as dopants in a chiral glassy liquid crystal. Adv Mater. 2006;16:477–484.
  • Kim Y, Wadab M, Tamaoki N. Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording. J Mater Chem C. 2014;2(10):1921–1926.
  • Hu G, Kelly SM, Kitney SP, et al. Novel nematic and glassy liquid crystalline oligomers as electroluminescent organic semiconductors. Liq Cryst. 2021;48(5):626–640.
  • Martínez Casado FJ, Ramos Riesco M, Redondo Yélamos MI, et al. The role of calorimetry in the structural study of mesophases and their glass states. J Therm Anal Calorim. 2012;108(2):399–413.
  • Klimusheva G, Mirnaya T, Garbovskiy Y. Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: design, properties, and applications. Liq Cryst Rev. 2015;3(1):28–57.
  • Martınez-Casado FJ, Ramos-Riesco M, Cheda JAR, et al. Short lead(ii) soaps: from weakly fluorescent crystals to strongly phosphorescent and structurally varied vitreous phases. A thermal, structural and spectroscopic study. J Mater Chem C. 2014;2(44):9489–9496.
  • Jongen L, Binnemans K, Hinz D, et al. Thermal behaviour of lanthanum(iii) alkanoates. Liq Cryst. 2001;28(11):1727–1733.
  • Klimusheva G, Bugaychuk S, Garbovskiy Y, et al. Fast dynamic holographic recording based on conductive ionic metal-alkanoate liquid crystals and smectic glasses. Opt Lett. 2006;31(2):235–237.
  • Lyashchova A, Fedorenko D, Garbovskiy Y, et al. Strong thermal optical nonlinearity causes by CdSe nanoparticles synthesized in smectic ionic liquid crystals. Liq Cryst. 2013;40(10):1377.
  • Zhulai DS, Bugaychuk SA, Klimusheva GV, et al. Structural characteristics of different types of nanoparticles synthesized in mesomorphic metal alkanoates. Liq Cryst. 2017;44(8):1269–1276.
  • Rudenko V, Tolochko A, Zhulai D, et al. Nonlinear optical properties of metal alkanoate composites with hybrid core/shell nanoparticles. Appl Nanosci. 2018;8:823–829.
  • Rudenko V, Garbosvkiy Y, Klimusheva G, et al. Intensity dependent nonlinear absorption coefficients and nonlinear refractive indices of glass-forming ionic liquid crystals doped with gold and silver nanoparticles. J Mol Liq. 2018;267:56–60.
  • Rudenko V, Garbovskiy Y, Klimusheva G, et al. Enhanced optical nonlinearity of the “nonlinear host–nonlinear guest” glassy nanocomposites made of the mesomorphic cobalt octanoate and noble metal nanoparticles. Josa B. 2016;33(4):648–655.
  • Rudenko V, Tolochko A, Bugaychuk S, et al. Probing optical nonlinearities of unconventional glass nanocomposites made of ionic liquid crystals and bimetallic nanoparticles. Nanomater. 2022;12:924.
  • Mirnaya T, Yaremchuk G. Synthesis and optical properties of nanocomposites based on liquid crystal with bimetallic Au + Ag nanoparticles of alloy type. Ukr Chem J. 2019;85(5):54–59.
  • Sheik-Bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett. 1989;14:955.
  • Chapple PB, Staromlynska J, Hermann JA, et al. Single-beam Z-scan: measurement techniques and analysis. J Nonlinear Opt Phys Mater. 1997;06:251–293.
  • Kwak CH, Lee YL, Kim SG. Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As2S3 thin film J. Opt Soc Am B. 1999;16:600–604.
  • Csapo E, OszkoA VE, Juhasz A, et al. Synthesis and characterization of Ag/Au alloy and core(ag)-shell(au) nanoparticles || colloids surfaces a. Physicochem Eng Aspects. 2012;415:281–287.
  • Kuzma A, Weis M, Daricek M, et al. Plasmonic properties of Au-Ag nanoparticles:distinctiveness of metal arrangements by optical study. J Appl Phys. 2014;115:053517.
  • Ballinger RA, Marshall CAW. Study of potentials suitable for band structure calculations of the noble metals II. Silver Gold J Phys C: Solid State Phys. 1969;2:1822.
  • Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6:4370–4379.
  • Boyd R. Nonlinear optics. 2nd ed. San Diego (USA): Academic Press; 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.