328
Views
0
CrossRef citations to date
0
Altmetric
Novel Applications

Asymmetrically anchored liquid crystal cell for display and photonics applications

, , &
Pages 1573-1581 | Received 18 Oct 2022, Published online: 02 Dec 2022

References

  • Schiekel M-F, Fahrenschon K. Deformation of nematic liquid crystals with vertical orientation in electric fields. Appl Phys Lett. 1971;19(10):391–393.
  • van Doorn C-Z. Dynamic behavior of twisted nematic liquid-crystal layers in switched fields. J Appl Phys. 1975;46(9):3738–3745.
  • Oh-e M, Kondo K. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl Phys Lett. 1995;67:3895–3897.
  • Lee J-H, Park K-H, Kim S-H, et al. AH-IPS, superb display for mobile device. Dig Tech Pap - Soc Inf Disp Int Symp. 2013;44(1):32–33.
  • Yin K, Hsiang E-L, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl. 2022;11(1):1–22.
  • Xiong J, Hsiang E-L, He Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10(1):1–30.
  • Huang Y, Hsiang E-L, Deng M-Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl. 2020;9(1):1–16.
  • Hoffman HG, Meyer III WJ, Ramirez M, et al. Feasibility of articulated arm mounted Oculus Rift Virtual Reality goggles for adjunctive pain control during occupational therapy in pediatric burn patients. Cyberpsychol Behav Soc Netw. 2014;17(6):397–401. DOI:10.1089/cyber.2014.0058
  • Luo Z, Wu S-T. OLED versus LCD: who wins? Opt Photonics News. 2015;2015:19–21.
  • Ueda N, Okada K, Uchida S, et al. Liquid crystal display with ultra-high resolution and super-fast response giving super reality to VR application. In Proceedings of the 23rd International Display Workshops; 20162016 Dec 7–9; Fukuoka, Japan. 281–284.
  • Parikh K, Zhuang J, Pallister K, et al. Next generation virtual reality displays: challenges and opportunities. Dig Tech Pap - Soc Inf Disp Int Symp. 2018;49(1):502–505.
  • Gou F, Chen H, Li M-C, et al. Submillisecond-response liquid crystal for high-resolution virtual reality displays. Opt Expr. 2017;25(7):7984–7997.
  • Matsushima T, Seki K, Kimura S, et al. Optimal fast-response LCD for high-definition virtual reality head mounted display. Dig Tech Pap - Soc Inf Disp Int Symp. 2018;49(1):667–670. DOI:10.1002/sdtp.12336
  • Oh-e M, Kondo K. Erratum:‘‘Response mechanism of nematic liquid crystals using the in‐plane switching mode. Appl Phys Lett. 1996;69(5):623–625.
  • Oh-e M, Yoneya M, Kondo K. Switching of negative and positive dielectro-anisotropic liquid crystals by in-plane electric fields. J Appl Phys. 1997;82(2):528.
  • Schadt M, Helfrich W. Voltage‐dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18(4):127–128.
  • Lee B-W, Park C, Kim S, et al. Reducing gray-level response to one frame; dynamic capacitance compensation. Dig Tech Pap - Soc Inf Disp Int Symp. 2001;32(1):1260–1263. DOI:10.1889/1.1831790
  • Song J-K, Lee K-E, Chang H-S, et al. DCC II: novel method for fast response time in PVA mode. Dig Tech Pap - Soc Inf Disp Int Symp. 2004;35(1):1344–1347. DOI:10.1889/1.1825761
  • Choi T-H, Park Y-J, Kim J-W, et al. Fast grey-to-grey switching of a homogenously aligned liquid crystal device. Liq Cryst. 2015;42(4):492–496.
  • Choi T-H, Choi Y, Park Y-J, et al. Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell. IEEE Photonics Technol Lett. 2016;28(10):1138–1141.
  • Choi T-H, Oh S-W, Park Y-J, et al. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls. Sci Rep. 2016;6(1):27936.
  • Choi T-H, Woo J-H, Choi Y, et al. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals. Opt Expr. 2016;24(24):27569–27576.
  • Woo J-H, Choi T-H, Jeon B-G, et al. Effect of curing temperature on electro-optical characteristics of a polymer-stabilized in-plane-switching liquid crystal cell. Cryst. 2017;7(9):260.
  • Zhuang Z, Suh S-W, Patel J-S. Polarization controller using nematic liquid crystals. Opt Lett. 1999;24(10):694.
  • Zhuang Z, Suh S-W, Patel J-S. Achromatic linear polarization rotator using twisted nematic liquid crystals. Appl Phys Lett. 2000;76(26):3995.
  • Wu TX, Huang Y, Wu ST. Design optimization of broadband linear polarization converter using twisted nematic liquid crystal. Jpn J Appl Phys. 2003;42:39.
  • Lavrentovich MD, Sergan TA, Kelly JR. Switchable broadband achromatic half-wave plate with nematic liquid crystals. Opt Lett. 2004;29(12):1411.
  • Shen S, She J, Tao T. Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal. J Opt Soc Am A. 2005;22(5):961.
  • Ren H, Wu S-T. Liquid-crystal-based linear polarization rotator. Appl Phys Lett. 2007;90(12):121123.
  • Aharon O, Abdulhalim II IS. Liquid crystal wavelength-independent continuous polarization rotator. Opt Eng. 2010;49(3):034002.
  • Liu C-K, Chiu C-Y, Morris SM, et al. Optically controllable linear-polarization rotator using chiral-azobenzene-doped liquid crystals. Materials. 2017;10(11):1299.
  • Chung T-Y, Tsai M-C, Liu C-K, et al. Achromatic linear polarization rotators by tandem twisted nematic liquid crystal cells. Sci Rep. 2018;8(1):13691.
  • Ye C. Construction of an optical rotator using quarter-wave plates and an optical retarder. Opt Eng. 1995;34(10):3031.
  • Moreno I, Martínez JL, Davis JA. Two-dimensional polarization rotator using a twisted-nematic liquid-crystal display. Appl Opt. 2007;46(6):881.
  • Safrani A, Abdulhalim I. Liquid-crystal polarization rotator and a tunable polarizer. Opt Lett. 2009;34(12):1801.
  • Tokita M, Sato O, Inagaki Y, et al. Watanabe high-density poly (methyl methacrylate) brushes as anchoring surfaces of nematic liquid crystals. Jpn J Appl Phys. 2011;50(7):071701. DOI:10.1143/JJAP.50.071701
  • Choi Y, Oh S-W, Choi T-H, et al. Liquid crystal cell asymmetrically anchored for high transmittance and triggered with a vertical field for fast switching. Opt Expr. 2020;28(14):20553–20562.
  • Choi Y, Oh S-W, Sohn H-J, et al. Broadband tunable polarization rotator based on the waveguiding effect of liquid crystals. J Phys D. 2021;54(35):355108.
  • Chen Y, Luo Z, Peng F, et al. Fringe-field switching with a negative dielectric anisotropy liquid crystal. J Disp Technol. 2013;9(2):74–77.
  • Chen H, Peng F, Hu M, et al. Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display. Liq Cryst. 2015;42(12):1730–1737.
  • Sato O, Okuno H, Adachi I, et al. Novel in-plane switching liquid crystal display with an extremely high transmittance using a well-designed bottlebrush as a zero-azimuth anchoring material. Jpn J Appl Phys. 2019;58(6):066503. DOI:10.7567/1347-4065/ab1e70
  • Sato O, Iwata N, Kawamura J, et al. An in-plane switching liquid crystal cell with weakly anchored liquid crystals on the electrode substrate. J Mater Chem C. 2017;5(18):4384–4387. DOI:10.1039/C6TC05465J
  • Sato O, Okuno H, Adachi I, et al. A high transmittance and fast response in-plane switching liquid crystal display with the zero-azimuth anchoring layers on the electrodes. J Phys D. 2020;53(15):15LT02. DOI:10.1088/1361-6463/ab6d96
  • Xiang CY, Guo JX, Sun XW, et al. A fast response, three-electrode liquid crystal device. Jpn J Appl Phys. 2003;42:L763–765.
  • Baek J-I, Kim K-H, Kim J-C, et al. Fast in-plane switching of a liquid crystal cell triggered by a vertical electric field. Jpn J Appl Phys. 2009;48(10):104505. DOI:10.1143/JJAP.48.104505
  • Nie X, Lu R, Xianyu H, et al. Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys. 2007;101(10):103110.
  • Yeh P, Gu C. Optics of Liquid Crystal Displays. New York: Wiley; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.