975
Views
2
CrossRef citations to date
0
Altmetric
Mathematical Modelling, Symmetry and Topology

A predictive theoretical model for stretch-induced instabilities in liquid crystal elastomers

, , , &
Pages 1426-1438 | Received 21 Nov 2022, Published online: 08 Jan 2023

References

  • Mistry D, Morgan PB, Clamp JH, et al. New insights into the nature of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal elastomers. Soft Matter. 2018;14(8):1301–1310.
  • Mistry D, Connell SD, Mickthwaite SL, et al. Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nat Commun. 2018;9(1):5095.
  • Mistry D, Gleeson HF. Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: deducing an empirical model encompassing anisotropic nonlinearity. J Polym Sci. 2019;57:1367–1377. DOI:10.1002/polb.24879
  • Mistry D, Nikkhou M, Raistrick T, et al. Isotropic liquid crystal elastomers as exceptional photoelastic strain sensors. Macromolecules. 2020;53(10):3709–3718.
  • Raistrick T, Zhang Z, Mistry D, et al. Understanding the physics of the auxetic response in a liquid crystal elastomer. Phys Rev Res. 2021;3(2):023191.
  • Raistrick T, Reynolds M, Gleeson HF, et al. Influence of liquid crystallinity and mechanical deformation on the molecular relaxations of an auxetic liquid crystal elastomer. Molecules. 2021;26(23):7313.
  • Finkelmann H, Kundler I, Terentjev EM, et al. Critical stripe-domain instability of nematic elastomers. J Phys II. 1997;7(8):1059–1069.
  • Kundler I, Finkelmann H. Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol Rapid Commun. 1995;16(9):679–686.
  • Kundler I, Finkelmann H. Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters. Macromol Chem Phys. 1998;199(4):677–686.
  • Petelin A, Čopič M. Observation of a soft mode of elastic instability in liquid crystal elastomers. Phys Rev Lett. 2009;103(7):077801.
  • Petelin A, Čopič M. Strain dependence of the nematic fluctuation relaxation in liquid-crystal elastomerss. Phys Rev E. 2010;82(1):011703.
  • Talroze RV, Zubarev ER, Kuptsov SA, et al. Liquid crystal acrylate-based networks: polymer backbone–LC order interaction. React Funct Polym. 1999;41(1–3):1–11.
  • Zubarev ER, Kuptsov SA, Yuranova TI, et al. Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains. Liq Cryst. 1999;26(10):1531–1540.
  • Mitchell GR, Davis FJ, Guo W. Strain-induced transition in liquid-crystal elastomers. Phys Rev Lett. 1993;71(18):2947.
  • Warner M, Terentjev EM. Liquid Crystal Elastomers. Oxford, UK: Oxford University Press; 2007.
  • Conti S, DeSimone A, Dolzmann G. Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J Mech Phys Solids. 2002;50(7):1431–1451.
  • DeSimone A, Dolzmann G. Material instabilities in nematic elastomers. Physica D. 2000;136(1–2):175–191.
  • DeSimone A, Teresi L. Elastic energies for nematic elastomers. Eur Phys J E. 2009;29(2):191–204.
  • Fried E, Sellers S. Free-energy density functions for nematic elastomers. J Mech Phys Solids. 2004;52(7):1671–1689.
  • Fried E, Sellers S. Orientational order and finite strain in nematic elastomers. J Chem Phys. 2005;123(4):043521.
  • Fried E, Sellers S. Soft elasticity is not necessary for striping in nematic elastomers. J Appl Phys. 2006;100(4):043521.
  • Goriely A, Mihai LA. Liquid crystal elastomers wrinkling. Nonlinearity. 2021;34(8):5599–5629.
  • Mihai LA, Goriely A. Likely striping in stochastic nematic elastomers. Math Mech Solids. 2020;25(10):1851–1872.
  • Mihai LA, Goriely A. Instabilities in liquid crystal elastomers. MRS Bull. 2021;46(9):784–794.
  • Mihai LA, Mistry D, Raistrick T, et al. A mathematical model for the auxetic response of liquid crystal elastomers. Philos Trans R Soc A. 2022;380(2234):20210326.
  • Ogden RW. Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A. 1972;326:565–584.
  • Ogden RW. Non-linear elastic deformations. New York (NY): Dover; 1997.
  • Mistry D. The richness of liquid crystal elastomer mechanics keeps growing. Liq Cryst Today. 2021;30(4):59–66.
  • Finkelmann H, Greve A, Warner M. The elastic anisotropy of nematic elastomers. Eur Phys J E. 2001;5(3):281–293.
  • de Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Urayama K, Mashita R, Kobayashi I, et al. Stretching-induced director rotation in thin films of liquid crystal elastomers with homeotropic alignment. Macromolecules. 2007;40(21):7665–7670.
  • Higaki H, Takigawa T, Urayama K. Nonuniform and uniform deformations of stretched nematic elastomers. Macromolecules. 2013;46(13):5223–5231.
  • Verwey GC, Warner M, Terentjev EM. Elastic instability and stripe domains in liquid crystalline elastomers. J Phys. 1996;6(9):1273–1290.
  • Mihai LA. Stochastic elasticity: a nondeterministic approach to the nonlinear field theory. Switzerland: Springer; 2022. doi:10.1007/978-3-031-06692-4.